Chinese Journal of Tissue Engineering Research ›› 2021, Vol. 25 ›› Issue (5): 798-806.doi: 10.3969/j.issn.2095-4344.3018
Previous Articles Next Articles
Deng Zhenhan1, Huang Yong2, Xiao Lulu2, Chen Yulin3, Zhu Weimin1, Lu Wei1, Wang Daping1
Received:
2020-02-10
Revised:
2020-02-15
Accepted:
2020-04-11
Online:
2021-02-18
Published:
2020-12-01
Contact:
Zhu Weimin, MD, Chief physician, Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen
Lu Wei, MD, Chief physician, Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
About author:
Deng Zhenhan, MD, Attending physician, Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
Supported by:
CLC Number:
Deng Zhenhan, Huang Yong, Xiao Lulu, Chen Yulin, Zhu Weimin, Lu Wei, Wang Daping. Role and application of bone morphogenetic proteins in articular cartilage regeneration[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 798-806.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 内源性骨形态发生蛋白在软骨损伤修复中的作用 当软骨因各种内外界因素导致损伤发生后,软骨细胞被激活增殖和迁移到损伤部位,由损伤激发的白细胞介素1α、白细胞介素6和CC趋化因子诱导软骨细胞激活,表达蛋白酶,从基质中释放到细胞外基质[16]。被激活的软骨细胞能表达血管内皮生长因子、成骨特异性转录因子2、X型胶原蛋白、ADAMTS-5、基质金属蛋白酶13等细胞因子,导致软骨下骨重塑并伴随皮质骨增厚。被激活的软骨细胞还能产生大量活性氧自由基,促进软骨基质的降解[17-18]。受损组织一旦开始发生降解和退行性改变,原始的成软骨细胞受到刺激后聚集在受伤部位启动组织再生进程。受损局部软骨再生促进了软骨内的炎性应答反应,该过程不涉及血管新生或炎症细胞迁移[2,19]。关节软骨没有血管、神经及淋巴组织,自身修复能力非常有限,活动性关节的关节软骨能否自愈目前仍不清楚[20]。研究表明活动关节处新生的软骨组织呈现出软骨相关特性,能够抵抗应力、压缩和拉伸,具有张力等[21-22]。局部产生的骨形态发生蛋白在保护软骨损伤以及炎症或者创伤后刺激组织再生中发挥重要作用[23]。骨形态发生蛋白通过与不同的受体结合激活不同的细胞内信号传导通路在软骨再生中起作用。不同种类的骨形态发生蛋白对细胞有不同的作用[24]。 骨形态发生蛋白的激活过程通过一些特殊抑制剂在多个水平进行调节。在细胞外,骨形态发生蛋白和头蛋白、腱蛋白等结合蛋白相互反应,阻止了骨形态发生蛋白和其自身受体BMPR的结合[25-26]。在细胞内,骨形态发生蛋白信号通路通过抑制抑制性Smads(I-Smads,如Smad6,Smad7)和Smad泛素化调节因子(Smad ubiquitination regulatory factors,Smurfs)进行调节。I-Smads竞争性抑制转化生长因子β信号通路,或通过与磷酰化BMPRⅠ反应,进而阻止受体调节的Smads(R-Smads)激活,或者通过与共同的偶配体Smads (Co-Smad或Smad4)竞争形成R-Smad/Co-Smad复合体[27]。Smad泛素化调节因子能够通过特异性分解BMPRⅠ和Smads蛋白进而抑制骨形态发生蛋白信号通路[28]。BAMBⅠ编码一种转化生长因子β假受体,这种假受体的结构类似转化生长因子β的真受体,但在生物活性上相差甚远。这两种受体竞争性结合BMPRⅡ受体,影响一系列下游基因的表达[29]。在关节软骨形成过程中,如果分化终末期被阻断,软骨将会永久性定居在长骨的两端[30-32]。有研究认为阻断骨形态发生蛋白活性会导致蛋白多糖损失,这一改变进而破坏了受损软骨自身的修复行为。如果软骨形成过程中丢失了骨形态发生蛋白相关的Smads蛋白(如Smad1和Smad5),将会导致软骨细胞进入终末分化期和产生严重的软骨缺损。此外,骨形态发生蛋白的拮抗剂和分解代谢的细胞因子共同限制了关节软骨的再生能力[33-34]。 2.2 骨形态发生蛋白在组织工程中作为生长因子促进软骨再生 软骨受损后再生能力很差,寻找到适当的靶细胞和生长 因子促进软骨再生仍然困难重重。因此,进一步阐明软骨不易愈合的原因,发现和研究新的疾病模型,对于开发出新的促进软骨再生的方法至关重要[1]。骨形态发生蛋白被证实具有良好的促进骨生长的作用,其不仅能促进骨骼系统生长,而且具有良好的诱导软骨生长的能力[35]。下面将组织工程中应用骨形态发生蛋白促进软骨修复的相关文献进行综述。 2.2.1 骨形态发生蛋白2促进软骨再生 骨形态发生蛋白2由114个氨基酸组成,人类以及大鼠、小鼠的骨形态发生蛋白2氨基酸序列具有高度保守型。骨形态发生蛋白2是一种二硫键同型二聚体蛋白,成熟的骨形态发生蛋白2是由单肽和前肽蛋白分解去除产生的,其不但能参与诱导软骨内成骨的全过程,还能促进多种细胞系的迁移、分化、增殖和凋亡等生理活动[36]。 目前骨形态发生蛋白2已广泛用于促进骨骼、软骨再生的多种体外和体内实验中[37-39]。SCHMAL等[40]检测了局限性软骨缺损患者和正常对照组膝关节灌洗液中骨形态发生蛋白2和其他细胞因子水平,发现正常对照组的骨形态发生蛋白2水平升高,骨形态发生蛋白2水平与临床效果相关,说明骨形态发生蛋白2在手术诱导的软骨损伤和再生过程中起到重要作用。ZHANG等[41]发现成纤维细胞生长因子2可诱导骨形态发生蛋白2,3,4的表达增多,促进了兔关节软骨缺损的修复。SHU等[42]发现骨形态发生蛋白2基因敲除鼠的生长板区域软骨细胞形态严重紊乱,关节软骨处有明显缺损,软骨细胞增生、分化和凋亡现象明显。WANG等[43]在研究骨关节炎软骨细胞能量代谢时发现,高表达骨形态发生蛋白2的软骨细胞线粒体代谢和氧化磷酸化过程明显增强。 目前,骨形态发生蛋白2单独或结合其他材料已被广泛用于治疗骨缺损和软骨退化。CLAUS等[44]发现外源性骨形态发生蛋白2与人软骨细胞共培养,可促进Ⅱ型胶原蛋白的表达和合成。骨形态发生蛋白2能促进人关节软骨向成软骨表型转化,可作为自体软骨移植的重要治疗手段。在接受骨形态发生蛋白2刺激后,牛滑膜来源干细胞能诱导产生表达软骨细胞特异性表型的基因[45]。负载骨形态发生蛋白2的注射型支架材料与骨髓间充质干细胞复合后可对兔软骨缺损进行完整修复[46]。 Matrilin-3是一种细胞外基质蛋白,骨形态发生蛋白2与matrilin-3直接或间接相互作用,提高了Ⅱ型胶原蛋白和蛋白多糖的表达,有助于维持软骨的张力和弹性[47]。体外研究和临床试验证实了重组人骨形态发生蛋白的骨诱导能力[48]。LóPIZ-MORALES等[49]证实在兔软骨缺损模型中重组人骨形态发生蛋白2比重组人骨形态发生蛋白4能更好地修复软骨下骨,治疗效果更佳。TANIYAMA等[50]将多孔羟基磷灰石/胶原蛋白和重组人骨形态发生蛋白2复合应用于软骨移植,取得了良好的疗效,这种复合物能有效促进软骨修复。 WANG等[51]将含有骨形态发生蛋白2和转化生长因子β3的腺病毒转染到脱钙骨基质/骨髓间充质干细胞复合物中,能够分泌大量的Ⅱ型胶原蛋白,形成的透明软骨质量更好,应用于猪软骨缺损模型中能够促进软骨再生。同样,RUAN等[37]通过慢病毒介导将骨形态发生蛋白2转染到骨髓间充质干细胞,联合富血小板血浆治疗兔软骨损伤,较单一骨髓间充质干细胞或者富血小板血浆治疗起到更好的软骨修复效果。REISBIG等[52]将高表达骨形态发生蛋白2的骨髓间充质干细胞与软骨细胞共培养,可诱导软骨细胞成熟,并表达更多软骨的特异性产物,在体内可明显提高软骨修复效果。SIEKER等[53]检测了骨髓凝块联合含有各种转基因补体DNA和腺病毒的效能,发现这些调节子的联合使用显著提升了关节软骨缺损的治疗效果。在另一个研究中,将骨形态发生蛋白2结合到含有壳聚糖-明胶的聚乳酸-乙醇酸共聚物锥形分层支架上,将这种复合支架移植到软骨-骨之间间隙,表现出良好的组织重建效果[54]。CHA等[55]设计了能同时转运骨形态发生蛋白2和Sox-9的微型运输转染系统,该系统能促进已分化的软骨细胞快速恢复原始软骨细胞的特性,促进了软骨的形成。3D打印聚已酸内酯支架协同骨形态发生蛋白2能显著促进软骨再生,且不会加速骨软骨钙化[56]。YANG等[57]发现长效转运骨形态发生蛋白2结合微骨折法比单纯的微骨折法更有利于促进透明软骨再生,将其应用于软骨缺损的治疗取得了显著的效果。在马的大块负重区软骨缺损模型中,通过直接注射和腺病毒载体转运骨形态发生蛋白2或骨形态发生蛋白6两种方法都取得了良好治疗效果,为软骨和软骨下骨再生提供了依据,但其长期效果如何目前还没有充分的证据[58]。因此,在将骨形态发生蛋白2广泛应用于人软骨缺损修复和再生之前还需要进行更多的实验和研究。 2.2.2 骨形态发生蛋白3促进软骨再生 骨形态发生蛋白3又被称为骨生成素,在一系列体外实验中发现骨形态发生蛋白3能刺激成骨细胞、骨膜细胞、软骨细胞和骨髓间充质干细胞等分化成骨和软骨[59]。骨形态发生蛋白3占脱钙骨组织总骨形态发生蛋白含量的65%。与其他骨形态发生蛋白家族成员不同的是,一些研究发现骨形态发生蛋白3缺乏成骨能力[60]。骨形态发生蛋白3被发现是成骨骨形态发生蛋白(如骨形态发生蛋白2和骨形态发生蛋白4等)的拮抗剂,可以通过激活TGF-β/activin信号通路和拮抗骨形态发生蛋白信号通路,实现对骨密度的负性调控[59,61-62]。既往研究主要集中于骨形态发生蛋白3在骨骼系统发育中的作用,但是这些研究表明骨形态发生蛋白3能通过重组人激活素受体2B(ACVR2B)调控软骨细胞增生[25,63]。一些研究致力于揭示骨形态发生蛋白3在软骨缺损修复中的作用[41,64]。在关节软骨中骨形态发生蛋白3的表达与机械应力相关[64]。在最近的一项研究中,将骨形态发生蛋白3应用于兔关节软骨修复,发现骨形态发生蛋白3能同时抑制局部和全层软骨缺损的修复。基因表达分析表明骨形态发生蛋白3不仅对现存的软骨细胞造成了不可逆损伤,而且抑制了骨髓间充质干细胞向软骨细胞分化[41]。综上所述,这些观察结果表明骨形态发生蛋白3可能是关节软骨再生过程中的一个负性调节因子,主要作用于骨形态发生蛋白信号通路,其具体拮抗机制还需要进一步的研究来揭示。 2.2.3 骨形态发生蛋白4促进软骨再生 1988年有研究人员首次提纯和克隆出了骨形态发生蛋白4,因其DNA结构序列和骨形态发生蛋白2非常类似将其命名为骨形态发生蛋白2B[65]。骨形态发生蛋白4基因位于人的染色体14q22-q33,全长1.9 kD,编码408个氨基酸,包含2个编码的外显子和3个5’端的非编码外显子。骨形态发生蛋白4通过自分泌或旁分泌在体内参与一系列生理活动,在维持软骨表型,增加基质生成以及加速干细胞在体外的软骨形成等方面都有重要作用[66]。 目前发现由腺病毒介导的骨形态发生蛋白4过表达能够诱导人间充质干细胞分化成为软骨细胞,并且诱导效率与腺病毒介导的骨形态发生蛋白2过表达几乎一样[67]。内源性骨形态发生蛋白4对于软骨生长、基质沉积和软骨细胞增殖都是必需的细胞因子[68]。HASHEM等[69]将腺病毒介导骨形态发生蛋白4过表达的脂肪干细胞联合软骨镶嵌术修复猪软骨缺损,发现其更接近于透明软骨修复。骨形态发生蛋白4还能够诱导已经去分化软骨细胞在体外和关节软骨缺损模型体内的再分化[70]。研究发现骨形态发生蛋白4可在骨折位点的愈合组织软骨细胞中表达,说明骨形态发生蛋白能通过影响软骨细胞的活力来调控骨折愈合的进程[71]。ZHANG等[72]构建多孔脱钙皮质骨生物支架,并利用腺病毒介导骨形态发生蛋白4基因疗法来治疗兔全层软骨缺损,这种复合型生物技术的应用促进了天然透明软骨的再生,迅速修复了大面积的软骨缺损。使用纳米颗粒进行基因转运,联合脂肪干细胞治疗能促进关节软骨修复[73]。由反转录病毒转导的骨形态发生蛋白4基因疗法同样可以促进体外软骨形成并显著提高关节软骨体内修复的效率[74]。 从小鼠肌肉中分离出的肌肉干细胞具有稳定增殖、自我更新以及多能分化能力。当同时使用肌肉来源干细胞、骨形态发生蛋白4和可溶性Flt-1(一种血管内皮生长因子拮抗剂) 进行关节注射时,可有效修复碘乙酸诱导的骨关节炎模型大鼠关节软骨损伤[75-76]。这种疗法的优势在于它在增加软骨形成的同时抑制了血管生成,实现了持续的软骨再生和修复。由臀大肌肌肉筋膜中分离得到的筋膜细胞在骨形态发生蛋白4的刺激下,也能在体外分化成为软骨细胞[77]。 2.2.4 骨形态发生蛋白6促进软骨再生 作为转化生长因子β超家族的一员,一系列体内和体外实验发现骨形态发生蛋白6在软骨分化过程中起到重要作用。成熟的软骨细胞可以表达骨形态发生蛋白6,并通过自分泌的方式加速软骨细胞成熟[78]。KAMEDA等[79]在成年人的正常关节软骨和骨关节炎关节软骨中都可以检测到骨形态发生蛋白6的表达,由此推测软骨中内源性骨形态发生蛋白6的表达与是否患有骨关节炎无关,说明骨形态发生蛋白6的作用之一是维护关节软骨的完整性,而且可能在软骨修复的分子生物学治疗中发挥作用。YE等[80]通过抑制软骨细胞中骨形态发生蛋白6的表达,发现Ⅱ型胶原和Ⅹ型胶原的mRNA表达明显降低,并且IGF1R、JAK2、PKC、PTH、IHH和 PTHrP的mRNA及PKC、IHH和PTHrP的蛋白表达水平明显减低,这表明骨形态发生蛋白6通过调节IGF1、JAK2、PKC、PTH和 IHH-PTHrP信号通路,在软骨细胞增殖和分化过程中起重要作用。在人的间充质干细胞培养基中加入骨形态发生蛋白6,发现细胞群的质量增加了10倍,蛋白多糖、Ⅱ型胶原和Ⅹ型胶原蛋白的含量显著增加,并显著促进了间充质干细胞向软骨分化的进程[81]。将骨形态发生蛋白6置于糖尿病大鼠模型拔掉牙齿的牙槽中,促进了牙槽外骨的骨膜下区域软骨发生[82]。KEMMIS等[83]发现骨形态发生蛋白6可以促进小鼠脂肪干细胞向软骨细胞和骨细胞分化,说明骨形态发生蛋白6能有效诱导脂肪干细胞等细胞系的成骨和成软骨分化。骨形态发生蛋白6还可以诱导人脂肪干细胞的软骨形成[84]。 骨形态发生蛋白6和其他生长因子的组合已被证明能有效改善各种干细胞的成软骨细胞分化能力。向含有酪胺衍生物氢过氧化物酶(HA-TA)的人间充质干细胞水凝胶培养基中加入骨形态发生蛋白6,可以同时促进成骨、成软骨细胞分化[85]。MENDES等[86]发现骨形态发生蛋白6结合骨形态发生蛋白2能促进体外培养的人骨膜来源间充质干细胞向软骨细胞分化,并促进了糖胺聚糖沉积和基质的矿化。CHOI等[87]联合转化生长因子β3和骨形态发生蛋白6诱导干细胞成软骨分化,Ⅰ型胶原、Ⅱ型胶原、蛋白聚糖等基因表达明显增加,表明两者有很强的成软骨作用。既往研究结果支持这种复合疗法表现出协同效应,共同诱导脂肪间充质干细胞、骨髓间充质干细胞和牙周韧带干细胞的软骨生成[88-90]。因此,将骨形态发生蛋白6与骨形态发生蛋白2结合的鸡尾酒疗法是促使上述各种细胞诱导成软骨的理想方法。另一项研究发现类NEL分子1、转化生长因子β3、骨形态发生蛋白6三种分子结合,将其应用于人血管周围干细胞能显著增强和加速软骨修复,并且呈现出比转化生长因子β联合骨形态发生蛋白更强的成软骨诱导能力,为新型软骨移植物的开发提供了一种新的方案[91-92]。 目前研究正致力于将基于骨形态发生蛋白6的基因疗法用于人软骨修复。通过生物工程技术构建出骨形态发生蛋白6基因修饰的大鼠骨髓间充质干细胞和三维壳聚糖支架,这种基因激活基质能够刺激大鼠骨髓间充质干细胞成软骨细胞诱导分化,说明了骨形态发生蛋白6基因激活的壳聚糖支架在促进软骨再生方面具有巨大潜能[93]。 2.2.5 骨形态发生蛋白7促进软骨再生 骨形态发生蛋白7作为一种软骨合成代谢因子,它能诱导软骨基质合成以及促进软骨修复。目前研究认为骨形态发生蛋白7在关节软骨和椎间盘软骨修复中可能起重要作用[94]。OZEKI等[95]将外源性骨形态发生蛋白7注射到大鼠跟腱组织中,一段时间后诱导出异位软骨形成,又在另一个大鼠模型中发现骨形态发生蛋白7能通过改变肌腱组织的胶原蛋白基因表达,阻止了软骨的退变进程。在持续跑步诱导的大鼠骨关节炎模型中,向患膝周期性注射骨形态发生蛋白7可以延缓关节软骨的退行性改变[96]。将这一疗法用于治疗酵母聚糖诱导的关节炎同样非常有效,且滑膜中的细胞因子很可能也发挥了作用[97]。GLAZER等[98]发现膝关节损伤后立即注射重组人骨形态发生蛋白7,受伤部位周边的软骨将来不会被累及,但如果没有立即注射则这种疗法的效果就会减弱。在另一项研究中,通过非病毒的Turbofect转染质粒编码的骨形态发生蛋白7基因修饰原始软骨细胞,发现这种转染了骨形态发生蛋白7的细胞具有更强的促进软骨愈合能力[99]。最近的一项研究发现,将转染人骨形态发生蛋白7的软骨细胞和人工基底膜一起培养,可有促进兔软骨缺损模型软骨愈合[100]。 研究认为,骨形态发生蛋白4比骨形态发生蛋白7具有更强的诱导软骨再生的能力。将含有骨形态发生蛋白4的双分子层胶原支架放入骨缺损处能够产生更多的软骨组织,软骨缺损得到了更好的修复[101]。RIEGGER等[102]通过联合抗氧化剂和成软骨诱导剂治疗创伤性软骨损伤时发现,半胱氨酸联合骨形态发生蛋白7对软骨修复作用较半胱氨酸联合其他成软骨诱导剂更强。KUO等[103]在未成年兔全层关节软骨损伤模型中使用微骨折与骨形态发生蛋白7联合治疗方法,发现二者相互协同,共同促进了软骨修复,新生的组织外观和功能上都非常接近自身的透明软骨组织,这种方法提升了再生软骨的数量和质量。GAVENIS等[104]使用不含细胞的Ⅰ型胶原蛋白凝胶结合载有骨形态发生蛋白7聚酯微球治疗全层关节软骨缺损,同样得到了较好的软骨愈合效果。PENG等[105]转染胰岛素样生长因子1和骨形态发生蛋白7或者二者联合转染骨髓间充质干细胞,用于兔软骨损伤模型修复,发现胰岛素样生长因子1联合骨形态发生蛋白7更能促进Ⅱ型胶原的表达,软骨修复能力更好。KIM等[106]通过将骨形态发生蛋白7与支架材料结合诱导滑膜间充质干细胞成软骨分化,将其植入兔软骨缺损处,6周后出现透明样软骨修复。 2.2.6 骨形态发生蛋白9促进软骨再生 骨形态发生蛋白9是骨形态发生蛋白家族中研究较少的成员之一。一系列体内和体外的研究结果表明骨形态发生蛋白9可能是骨形态发生蛋白家族中成骨能力最强的成员,因而受到广泛的关注[107-109]。骨形态发生蛋白9又被称为生长分化因子2,主要由肝细胞分泌并完成表达。骨形态发生蛋白9的免疫性较低,一般不会引起集体的免疫排斥反应,或只会引起轻微的免疫刺激,因而是该家族中唯一能在有免疫能力活体动物中显著诱导骨形成的骨形态发生蛋白成员。骨形态发生蛋白9为高度保守的糖蛋白,仅对胰蛋白酶和糜蛋白酶敏感,对于胶原酶和核酸酶等大部分蛋白酶不敏感。体内的骨形态发生蛋白9一般以前体或二聚体的形式存在,不同于其他转化生长因子β超家族成员的结构特性,骨形态发生蛋白9不含有第七保守半胱氨酸[110]。人的骨形态发生蛋白9基因位于10q11.22染色体上,其前体包含了428个氨基酸残基,这些氨基酸序列中有一半左右与骨形态发生蛋白2,4,5,6,7,8相同,与鼠骨形态发生蛋白9的同源性高达80%[111-113]。 已知骨形态发生蛋白9诱导干细胞成骨分化的能力明显强于其他骨形态发生蛋白[114]。FUJIOKA-KOBAYASHI等[107]分别向人间充质干细胞培养基中加入骨形态发生蛋白2和骨形态发生蛋白9,发现后者的Ⅱ型胶原蛋白mRNA表达升高更为明显,并且聚蛋白多糖和软骨寡聚基质蛋白表达也增多,说明骨形态发生蛋白9促进干细胞成软骨分化。另一项研究中,软骨细胞培养于不同浓度重组人骨形态发生蛋白9,表现出蛋白多糖和胶原蛋白含量明显增多,且具有蛋白多糖比例增加和胶原蛋白比例减少的趋势[115]。在最近的一项研究中,将骨形态发生蛋白9与纳米分子矿化的胶原蛋白糖胺聚糖支架结合,显著促进了干细胞分化[116]。CHENG等[117]通过与骨形态发生蛋白2、骨形态发生蛋白6比较,骨形态发生蛋白9促进C3H10T1/2和ATDC5细胞成软骨能力更强,并且与时间和剂量相关。通过共聚焦显微镜观察到SMAD1/5磷酸化产物在细胞核聚集,这与激活SMAD信号通路相符合。此外,作者还观察到骨形态发生蛋白9激活p38的现象。由此可见骨形态发生蛋白9通过以上途径参与到成软骨分化过程中。LIU等[118]将高表达骨形态发生蛋白9的脂肪间质干细胞注射到鼠软骨损伤处,关节软骨Ⅱ型胶原和蛋白聚糖表达明显增加,但抑制Notch信号通路后,脂肪间质干细胞修复软骨的作用减弱,因此可以判断骨形态发生蛋白9通过Notch信号通路促进软骨分化。YU等[119]用骨形态发生蛋白9治疗截肢创面发现可以刺激残端骨形成。以上这些体外实验研究证明了骨形态发生蛋白9是一种具有促进软骨发育的调节因子。"
[1] MESSINA OD, VIDAL WM, VIDAL NL. Nutrition, osteoarthritis and cartilage metabolism. Aging Clin Exp Res. 2019;31(6):807-813. [2] MARTINEZ-MORENO D, JIMENEZ G, GALVEZ-MARTIN P, et al. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6): 1067-1075. [3] MEHANA EE, KHAFAGA AF, EL-BLEHI SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019;234:116786. [4] YANG CY, CHANALARIS A, TROEBERG L. ADAMTS and ADAM metalloproteinases in osteoarthritis - looking beyond the ‘usual suspects. Osteoarthritis Cartilage. 2017;25(7):1000-1009. [5] BURLEIGH A, CHANALARIS A, GARDINER MD, et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 2012; 64(7): 2278-2288. [6] PICKETT AM, HENSLEY DJ. Knee cell-based cartilage restoration. J Knee Surg. 2019; 32(2): 127-133. [7] HUNTER DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393 (10182): 1745-1759. [8] PAESOLD G, NERLICH AG, BOOS N. Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J. 2007; 16(4): 447-468. [9] THIELEN N, VAN DER KRAAN PM, VAN CAAM A.TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells. 2019;8(9): E969. [10] URIST MR. Bone: formation by autoinduction. Science. 1965; 150(3698): 893-899. [11] GRGUREVIC L, PECINA M, VUKICEVIC S, et al. Urist and the discovery of bone morphogenetic proteins. Int Orthop. 2017; 41(5): 1065-1069. [12] ANUSUYA GS, KANDASAMY M, JACOB RS, et al. Bone morphogenetic proteins: Signaling periodontal bone regeneration and repair. J Pharm Bioallied Sci. 2016; 8(Suppl 1): S39-S41. [13] REDDI AH. Cartilage morphogenetic proteins: role in joint development, homoeostasis, and regeneration Ann Rheum Dis. 2003; 62 Suppl 2: i73-i78. [14] MISHINA Y, STARBUCK MW, GENTILE MA, et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem. 2004; 279(26): 27560-27566. [15] LIN S, SVOBODA KK, FENG JQ, et al. The biological function of type I receptors of bone morphogenetic protein in bone. Bone Res. 2016; 4: 16005. [16] WONG VW, GURTNER GC, LONGAKER MT. Wound healing: a paradigm for regeneration. Mayo Clin Proc. 2013; 88(9): 1022-1031. [17] TIKU ML, SHAH R, ALLISON GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000; 275(26): 20069-20076. [18] GOLDRING MB, GOLDRING SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010; 1192: 230-237. [19] MORALES TI. Chondrocyte moves: clever strategies. Osteoarthritis Cartilage. 2007; 15(8): 861-871. [20] HUEY DJ, HU JC, ATHANASIOU KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012; 338(6109): 917-921. [21] DUPONT S, MORSUT L, ARAGONA M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474(7350): 179-183. [22] WIEGANT K, VAN ROERMUND PM, INTEMA F, et al. Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthritis Cartilage. 2013; 21(11): 1660-1667. [23] REDDI AH. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res. 2001; 3(1): 1-5. [24] GAMER LW, HO V, COX K, et al. Expression and function of BMP3 during chick limb development. Dev Dyn. 2008; 237(6): 1691-1698. [25] HOLLEY SA, JACKSON PD, SASAI Y, et al. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin. Nature. 1995; 376(6537): 249-253. [26] NEUL JL, FERGUSON EL. Spatially restricted activation of the SAX receptor by SCW modulates DPP/TKV signaling in Drosophila dorsal-ventral patterning. Cell. 1998; 95(4): 483-494. [27] ITOH F, ASAO H, SUGAMURA K, et al. Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J. 2001; 20(15): 4132-4142. [28] ZHU H, KAVSAK P, ABDOLLAH S, et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999; 400(6745): 687-693. [29] BALEMANS W, VAN HUL W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol. 2002; 250(2): 231-250. [30] WU W, BILLINGHURST RC, PIDOUX I, et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 2002; 46(8): 2087-2094. [31] TCHETINA EV, SQUIRES G, POOLE AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol. 2005; 32(5): 876-886. [32] VAN DER KRAAN PM, BLANEY DAVIDSON EN, VAN DEN BERG WB. Bone morphogenetic proteins and articular cartilage: To serve and protect or a wolf in sheep clothing’s. Osteoarthritis Cartilage. 2010; 18(6): 735-741. [33] BLANEY DE, VITTERS EL, VAN LENT PL, et al. Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Res Ther. 2007; 9(5): R102. [34] RETTING KN, SONG B, YOON BS, et al. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development. 2009;136(7): 1093-1104. [35] ALI IH, BRAZIL DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol. 2014; 171(15): 3620-3632. [36] DENG ZH, LI YS, GAO X, et al. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage. 2018; 26(9): 1153-1161. [37] RUAN S, DENG J, YAN L, et al. Evaluation of the effects of the combination of BMP-2-modified BMSCs and PRP on cartilage defects. Exp Ther Med. 2018; 16(6): 4569-4577. [38] KAMAL AF, SIAHAAN O, FIOLIN J. Various Dosages of BMP-2 for Management of Massive Bone Defect in Sprague Dawley Rat. Arch Bone Jt Surg. 2019; 7(6): 498-505. [39] HERBERG S, MCDERMOTT AM, DANG PN, et al. Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair. Sci Adv. 2019; 5(8): eaax2476. [40] SCHMAL H, NIEMEYER P, ZWINGMANN J, et al. Association between expression of the bone morphogenetic proteins 2 and 7 in the repair of circumscribed cartilage lesions with clinical outcome. BMC Musculoskelet Disord. 2010; 11: 170. [41] ZHANG Z, YANG W, CAO Y, et al. The Functions of BMP3 in Rabbit Articular Cartilage Repair. Int J Mol Sci. 2015; 16(11): 25934-25946. [42] SHU B, ZHANG M, XIE R, et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci. 2011; 124(Pt 20): 3428-3440. [43] WANG C, SILVERMAN RM, SHEN J, et al. Distinct metabolic programs induced by TGF-beta1 and BMP2 in human articular chondrocytes with osteoarthritis. J Orthop Translat. 2018; 12: 66-73. [44] CLAUS S, AUBERT-FOUCHER E, DEMOOR M, et al. Chronic exposure of bone morphogenetic protein-2 favors chondrogenic expression in human articular chondrocytes amplified in monolayer cultures. J Cell Biochem. 2010; 111(6): 1642-1651. [45] PARK Y, SUGIMOTO M, WATRIN A, et al. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage. 2005; 13(6): 527-536. [46] NEYBECKER P, HENRIONNET C, PAPE E, et al. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res Ther. 2018; 9(1): 329. [47] MUTTIGI MS, HAN I, PARK HK, et al. Matrilin-3 Role in Cartilage Development and Osteoarthritis. Int J Mol Sci. 2016; 17(4). pii: E590. [48] SIERRA-GARCIA GD, CASTRO-RIOS R, GONZALEZ-HORTA A, et al. Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects. Gac Med Mex. 2016; 152(3): 381-385. [49] LOPIZ-MORALES Y, ABARRATEGI A, RAMOS V, et al. In vivo comparison of the effects of rhBMP-2 and rhBMP-4 in osteochondral tissue regeneration. Eur Cell Mater. 2010; 20: 367-378. [50] TANIYAMA T, MASAOKA T, YAMADA T, et al. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs. 2015; 39(6): 529-535. [51] WANG X, LI Y, HAN R, et al. Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-beta3 gene promoted pig cartilage defect repair. PLoS One. 2014; 9(12): e116061. [52] REISBIG NA, PINNELL E, SCHEUERMAN L, et al. Synovium extra cellular matrices seeded with transduced mesenchymal stem cells stimulate chondrocyte maturation in vitro and cartilage healing in clinically-induced rat-knee lesions in vivo. PLoS One. 2019; 14(3): e212664. [53] SIEKER JT, KUNZ M, WEISSENBERGER M, et al. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage. 2015; 23(3): 433-442. [54] HAN F, ZHOU F, YANG X, et al. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-beta1 and BMP-2 for regeneration of cartilage-bone interface. J Biomed Mater Res B Appl Biomater. 2015; 103(7): 1344-1353. [55] CHA BH, KIM JH, KANG SW, et al. Cartilage tissue formation from dedifferentiated chondrocytes by codelivery of BMP-2 and SOX-9 genes encoding bicistronic vector. Cell Transplant. 2013; 22(9): 1519-1528. [56] JEONG CG, ZHANG H, HOLLISTER SJ. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. J Biomed Mater Res A. 2012; 100(8): 2088-2096. [57] YANG HS, LA WG, BHANG SH, et al. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A. 2011; 17(13-14): 1809-1818. [58] MENENDEZ MI, CLARK DJ, CARLTON M, et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage. 2011; 19(8): 1066-1075. [59] VUKICEVIC S, LUYTEN FP, REDDI AH. Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc Natl Acad Sci U S A. 1989; 86(22): 8793-8797. [60] BAHAMONDE ME, LYONS KM. BMP3: to be or not to be a BMP. J Bone Joint Surg Am. 2001; 83-A Suppl 1(Pt 1): S56-S62. [61] DALUISKI A, ENGSTRAND T, BAHAMONDE ME, et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet. 2001; 27(1): 84-88. [62] GAMER LW, NOVE J, LEVIN M, et al. BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Dev Biol. 2005; 285(1): 156-168. [63] GAMER LW, COX K, CARLO JM, et al. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. Dev Dyn. 2009; 238(9): 2374-2381. [64] ZHENG L, YAMASHIRO T, FUKUNAGA T, et al. Bone morphogenetic protein 3 expression pattern in rat condylar cartilage, femoral cartilage and mandibular fracture callus. Eur J Oral Sci. 2005; 113(4): 318-325. [65] WOZNEY JM, ROSEN V, CELESTE AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988; 242(4885): 1528-1534. [66] COLE AE, MURRAY SS, XIAO J. Bone morphogenetic protein 4 signalling in neural stem and progenitor cells during development and after injury. Stem Cells Int. 2016; 2016: 9260592. [67] STEINERT AF, PROFFEN B, KUNZ M, et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res Ther. 2009; 11(5): R148. [68] SHUM L, WANG X, KANE AA, et al. BMP4 promotes chondrocyte proliferation and hypertrophy in the endochondral cranial base. Int J Dev Biol. 2003; 47(6): 423-431. [69] HASHEM IAT, YAQOOB I, ANUAR NB, et al. The rise of “big data” on cloud computing: Review and open research issues. Information Systems. 2015; 47: 98-115. [70] LIN L, ZHOU C, WEI X, et al. Articular cartilage repair using dedifferentiated articular chondrocytes and bone morphogenetic protein 4 in a rabbit model of articular cartilage defects. Arthritis Rheum. 2008; 58(4): 1067-1075. [71] YU YY, LIEU S, LU C, et al. Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone. 2010; 46(3): 841-851. [72] ZHANG X, ZHENG Z, LIU P, et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair. Biomaterials. 2008; 29(35): 4616-4629. [73] SHI J, ZHANG X, ZHU J, et al. Nanoparticle delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthroscopy. 2013; 29(12): 2001-2011. [74] KURODA R, USAS A, KUBO S, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 2006; 54(2): 433-442. [75] KUBO S, COOPER GM, MATSUMOTO T, et al. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 2009; 60(1): 155-165. [76] MATSUMOTO T, COOPER GM, GHARAIBEH B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 2009; 60(5): 1390-1405. [77] GRIMSRUD CD, ROMANO PR, D’SOUZA M, et al. BMP-6 is an autocrine stimulator of chondrocyte differentiation. J Bone Miner Res. 1999; 14(4): 475-482. [78] ITO H, AKIYAMA H, SHIGENO C, et al. Bone morphogenetic protein-6 and parathyroid hormone-related protein coordinately regulate the hypertrophic conversion in mouse clonal chondrogenic EC cells, ATDC5. Biochim Biophys Acta. 1999; 1451(2-3): 263-270. [79] KAMEDA T, KOIKE C, SAITOH K, et al. Analysis of cartilage maturation using micromass cultures of primary chondrocytes. Dev Growth Differ. 2000; 42(3): 229-236. [80] YE F, XU H, YIN H, et al. The role of BMP6 in the proliferation and differentiation of chicken cartilage cells. PLoS One. 2019; 14(7): e204384. [81] SEKIYA I, COLTER DC, PROCKOP DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun. 2001; 284(2): 411-418. [82] SHYNG YC, CHI CY, DEVLIN H, et al. Healing of tooth extraction sockets in the streptozotocin diabetic rat model: Induction of cartilage by BMP-6. Growth Factors. 2010; 28(6): 447-451. [83] KEMMIS CM, VAHDATI A, WEISS HE, et al. Bone morphogenetic protein 6 drives both osteogenesis and chondrogenesis in murine adipose-derived mesenchymal cells depending on culture conditions. Biochem Biophys Res Commun. 2010; 401(1): 20-25. [84] UDE CC, SHAMSUL BS, NG MH, et al. Long-term evaluation of osteoarthritis sheep knee, treated with TGF-beta3 and BMP-6 induced multipotent stem cells. Exp Gerontol. 2018; 104: 43-51. [85] DVORAKOVA J, KUCERA L, KUCERA J, et al. Chondrogenic differentiation of mesenchymal stem cells in a hydrogel system based on an enzymatically crosslinked tyramine derivative of hyaluronan. J Biomed Mater Res A. 2014; 102(10): 3523-3530. [86] MENDES LF, TAM WL, CHAI YC, et al. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells. Tissue Eng Part C Methods. 2016; 22(5): 473-486. [87] CHOI S, CHO TJ, KWON SK, et al. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-beta3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int J Oral Sci. 2013; 5(1): 7-13. [88] HILDNER F, PETERBAUER A, WOLBANK S, et al. FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-beta in human adipose derived stem cells. J Biomed Mater Res A. 2010; 94(3): 978-987. [89] YE K, FELIMBAN R, TRAIANEDES K, et al. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS One. 2014; 9(6): e99410. [90] UDE CC, CHEN HC, NORHAMDAN MY, et al. The evaluation of cartilage differentiations using transforming growth factor beta3 alone and with combination of bone morphogenetic protein-6 on adult stem cells. Cell Tissue Bank. 2017; 18(3): 355-367. [91] DANISOVIC L, VARGA I, POLAK S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell. 2012; 44(2): 69-73. [92] LI CS, ZHANG X, PEAULT B, et al. Accelerated Chondrogenic Differentiation of Human Perivascular Stem Cells with NELL-1. Tissue Eng Part A. 2016; 22(3-4): 272-285. [93] KAYABASI GK, AYDIN RS, GUMUSDERELIOGLU M. In vitro chondrogenesis by BMP6 gene therapy. J Biomed Mater Res A. 2013; 101(5): 1353-1361. [94] WERLE S, ABUNAHLEH K, BOEHM H. Bone morphogenetic protein 7 and autologous bone graft in revision surgery for non-union after lumbar interbody fusion. Arch Orthop Trauma Surg. 2016; 136(8): 1041-1049. [95] OZEKI N, MUNETA T, KOGA H, et al. Transplantation of Achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. Arthritis Rheum. 2013; 65(11): 2876-2886. [96] SEKIYA I, TANG T, HAYASHI M, et al. Periodic knee injections of BMP-7 delay cartilage degeneration induced by excessive running in rats. J Orthop Res. 2009; 27(8): 1088-1092. [97] TAKAHASHI T, MUNETA T, TSUJI K, et al. BMP-7 inhibits cartilage degeneration through suppression of inflammation in rat zymosan-induced arthritis. Cell Tissue Res. 2011; 344(2): 321-332. [98] GLAZER HS, MOLINA PL, SIEGEL MJ, et al. High-attenuation mediastinal masses on unenhanced CT. AJR Am J Roentgenol. 1991; 156(1): 45-50. [99] ODABAS S, FEICHTINGER GA, KORKUSUZ P, et al. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. J Tissue Eng Regen Med. 2013; 7(10): 831-840. [100] XIA X, LI J, XIA B, et al. Matrigel scaffold combined with Ad-hBMP7-transfected chondrocytes improves the repair of rabbit cartilage defect. Exp Ther Med. 2017; 13(2): 542-550. [101] JIANG Y, CHEN LK, ZHU DC, et al. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair. Tissue Eng Part A. 2010; 16(5): 1621-1632. [102] RIEGGER J, JOOS H, PALM HG, et al. Striking a new path in reducing cartilage breakdown: combination of antioxidative therapy and chondroanabolic stimulation after blunt cartilage trauma. J Cell Mol Med. 2018; 22(1): 77-88. [103] KUO AC, RODRIGO JJ, REDDI AH, et al. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage. 2006; 14(11): 1126-1135. [104] GAVENIS K, HEUSSEN N, HOFMAN M, et al. Cell-free repair of small cartilage defects in the Goettinger minipig: the effects of BMP-7 continuously released by poly(lactic-co-glycolid acid) microspheres. J Biomater Appl. 2014; 28(7): 1008-1015. [105] PENG XB, ZHANG Y, WANG YQ, et al. IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells. J Cell Biochem. 2019; 120(4): 5570-5582. [106] KIM HJ, HAN MA, SHIN JY, et al. Intra-articular delivery of synovium-resident mesenchymal stem cells via BMP-7-loaded fibrous PLGA scaffolds for cartilage repair. J Control Release. 2019; 302: 169-180. [107] FUJIOKA-KOBAYASHI M, ABD EL RAOUF M, SAULACIC N, et al. Superior bone-inducing potential of rhBMP9 compared to rhBMP2. J Biomed Mater Res A. 2018;106(6):1561-1574. [108] FUJIOKA-KOBAYASHI M, SCHALLER B, SAULACIC N, et al. Absorbable collagen sponges loaded with recombinant bone morphogenetic protein 9 induces greater osteoblast differentiation when compared to bone morphogenetic protein 2. Clin Exp Dent Res. 2017; 3(1): 32-40. [109] TANG N, SONG WX, LUO J, et al. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med. 2009;13(8B): 2448-2464. [110] GROENEVELD EH, BURGER EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol. 2000; 142(1): 9-21. [111] LIU H, ZHONG L, YUAN T, et al. MicroRNA-155 inhibits the osteogenic differentiation of mesenchymal stem cells induced by BMP9 via downregulation of BMP signaling pathway. Int J Mol Med. 2018; 41(6): 3379-3393. [112] LITTLE SC, MULLINS MC. Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol. 2009; 11(5): 637-643. [113] YAN S, ZHANG R, WU K, et al. Characterization of the essential role of bone morphogenetic protein 9 (BMP9) in osteogenic differentiation of mesenchymal stem cells (MSCs) through RNA interference. Genes Dis. 2018; 5(2): 172-184. [114] ZHANG F, SONG J, ZHANG H, et al. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering. Genes Dis. 2016; 3(4): 263-276. [115] BLUNK T, SIEMINSKI AL, APPEL B, et al. Bone morphogenetic protein 9: a potent modulator of cartilage development in vitro. Growth Factors. 2003; 21(2): 71-77. [116] REN X, WEISGERBER DW, BISCHOFF D, et al. Nanoparticulate Mineralized Collagen Scaffolds and BMP-9 Induce a Long-Term Bone Cartilage Construct in Human Mesenchymal Stem Cells. Adv Healthc Mater. 2016; 5(14): 1821-1830. [117] CHENG A, GUSTAFSON AR, SCHANER TC, et al. BMP-9 dependent pathways required for the chondrogenic differentiation of pluripotent stem cells. Differentiation. 2016; 92(5): 298-305. [118] LIU X, DU M, WANG Y, et al. BMP9 overexpressing adipose-derived mesenchymal stem cells promote cartilage repair in osteoarthritis-affected knee joint via the Notch1/Jagged1 signaling pathway. Exp Ther Med. 2018; 16(6): 4623-4631. [119] YU L, DAWSON LA, YAN M, et al. BMP9 stimulates joint regeneration at digit amputation wounds in mice. Nat Commun. 2019; 10(1): 424. [120] CHU H, GAO J, CHEN CW, et al. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc Natl Acad Sci U S A. 2011; 108(33): 13444-13449. [121] JOHNSON NR, WANG Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J Control Release. 2013;166(2):124-129. [122] LI H, JOHNSON NR, USAS A, et al. Sustained release of bone morphogenetic protein 2 via coacervate improves the osteogenic potential of muscle-derived stem cells. Stem Cells Transl Med. 2013; 2(9): 667-677. [123] ZHANG W, CHEN J, TAO J, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 2013; 34(3): 713-723. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Hu Kai, Qiao Xiaohong, Zhang Yonghong, Wang Dong, Qin Sihe. Treatment of displaced intra-articular calcaneal fractures with cannulated screws and plates: a meta-analysis of 15 randomized controlled trials [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1465-1470. |
[3] | Huang Dengcheng, Wang Zhike, Cao Xuewei. Comparison of the short-term efficacy of extracorporeal shock wave therapy for middle-aged and elderly knee osteoarthritis: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1471-1476. |
[4] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[5] | Jiang Yong, Luo Yi, Ding Yongli, Zhou Yong, Min Li, Tang Fan, Zhang Wenli, Duan Hong, Tu Chongqi. Von Mises stress on the influence of pelvic stability by precise sacral resection and clinical validation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1318-1323. |
[6] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[7] | Zhang Yu, Tian Shaoqi, Zeng Guobo, Hu Chuan. Risk factors for myocardial infarction following primary total joint arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1340-1345. |
[8] | Wei Wei, Li Jian, Huang Linhai, Lan Mindong, Lu Xianwei, Huang Shaodong. Factors affecting fall fear in the first movement of elderly patients after total knee or hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1351-1355. |
[9] | Wang Jinjun, Deng Zengfa, Liu Kang, He Zhiyong, Yu Xinping, Liang Jianji, Li Chen, Guo Zhouyang. Hemostatic effect and safety of intravenous drip of tranexamic acid combined with topical application of cocktail containing tranexamic acid in total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1356-1361. |
[10] | Xiao Guoqing, Liu Xuanze, Yan Yuhao, Zhong Xihong. Influencing factors of knee flexion limitation after total knee arthroplasty with posterior stabilized prostheses [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1362-1367. |
[11] | Peng Zhihao, Feng Zongquan, Zou Yonggen, Niu Guoqing, Wu Feng. Relationship of lower limb force line and the progression of lateral compartment arthritis after unicompartmental knee arthroplasty with mobile bearing [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1368-1374. |
[12] | Huang Zexiao, Yang Mei, Lin Shiwei, He Heyu. Correlation between the level of serum n-3 polyunsaturated fatty acids and quadriceps weakness in the early stage after total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1375-1380. |
[13] | Zhang Chong, Liu Zhiang, Yao Shuaihui, Gao Junsheng, Jiang Yan, Zhang Lu. Safety and effectiveness of topical application of tranexamic acid to reduce drainage of elderly femoral neck fractures after total hip arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1381-1386. |
[14] | Wang Haiying, Lü Bing, Li Hui, Wang Shunyi. Posterior lumbar interbody fusion for degenerative lumbar spondylolisthesis: prediction of functional prognosis of patients based on spinopelvic parameters [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1393-1397. |
[15] | Lü Zhen, Bai Jinzhu. A prospective study on the application of staged lumbar motion chain rehabilitation based on McKenzie’s technique after lumbar percutaneous transforaminal endoscopic discectomy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1398-1403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||