Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (14): 1981-1988.doi: 10.3969/j.issn.2095-4344.2016.14.001
Ren Yi-xing1, Meng Xian-yong2, Hu Chang-bo2, Yang Xin-ming2
Received:
2016-02-15
Online:
2016-04-01
Published:
2016-04-01
Contact:
Yang Xin-ming, Professor, Master’s supervisor, Department of Orthopedics, First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
About author:
Ren Yi-xing, Studying for master’s degree, Graduate School of Hebei North University, Zhangjiakou 075000, Hebei Province, China
Supported by:
the Medical Science Research Project of Hebei Health Department in 2011, No. 20110176; the Innovative Talent Culture Fund of Hebei North University in 2013, No. CXRC1322
Ren Yi-xing, Meng Xian-yong, Hu Chang-bo, Yang Xin-ming. Combined use of interleukin-6 receptor monoclonal antibody and bone marrow mesenchymal stem cells reduces neuronal apoptosis after acute spine cord injury[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(14): 1981-1988.
[1] 李盛华,张绍文,樊成虎.1005例胸腰椎骨折住院患者流行病学特征分析[J].西部中医药,2014, 7(5):70-73. [2] Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener. 2012; 7:6. [3] 郑力恒,林宏生,李锦聪,等.脊髓损伤后急性期甲基强的松龙干预对脊髓神经细胞凋亡的影响[J].中国脊柱脊髓杂志, 2012, 22(5):452-458. [4] Cafferty WB, Gardiner NJ, Das P, et al. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci. 2004;24(18): 4432-4443. [5] Guerrero AR, Uchida K, Nakajima H, et al. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation. 2012;9:40. [6] 李一帆,陈东,张大威,等.急性大鼠脊髓损伤 Allen’s法模型改良及电生理评价[J].中国实验诊断学, 2010, 14(8): 1169-1172. [7] Paul C, Samdani AF, Betz RR, et al. Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods.Spine (Phila Pa 1976). 2009;34(4):328-334. [8] Oyinbo CA.Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2): 281-299. [9] Uchida K, Nakajima H, Watanabe S, et al. Apoptosis of neurons and oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy): possible pathomechanism of human cervical compressive myelopathy.Eur Spine J. 2012;21(3):490-497. [10] 吴嘉燕,洪正华,张晓明.机械性脊髓损伤病理机制研究进展[J].国际骨科学杂志, 2008, 29(2):113-114. [11] Yin X, Yin Y, Cao FL, et al. Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats. PLoS One. 2012;7(6):e38381. [12] Karalija A, Novikova LN, Kingham PJ, et al. Neuroprotective effects of N-acetyl-cysteine and acetyl-L-carnitine after spinal cord injury in adult rats. PLoS One. 2012;7(7):e41086. [13] 孙崇毅,刘庆鹏,肖艳秋,等. 缺氧预处理神经干细胞移植对大鼠急性脊髓损伤后神经胶质细胞凋亡及脊髓空洞形成的影响[J]. 现代生物医学进展, 2011, 23(23):4627-4631. [14] Gökce EC, Kahveci R, Gökce A, et al. Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. J Neurosurg Spine. 2016. [Epub ahead of print] [15] Quinzaños-Fresnedo J, Sahagún-Olmos RC. Micro RNA and its role in the pathophysiology of spinal cord injury - a further step towards neuroregenerative medicine. Cir Cir. 2015;83(5):442-447. [16] Misra K, Sabaawy HE.Minimally manipulated autologous adherent bone marrow cells (ABMCs): a promising cell therapy of spinal cord injury. Neural Regen Res. 2015; 10 (7): 1058-1060. [17] 董效信,任晓敏,董雅妮.胚胎干细胞研究的伦理和心理学问题[J].中国组织工程研究与临床康复, 2011, 15(49): 9303-9306. [18] Li M, Yu A, Zhang F, et al. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells.J Transl Med. 2012;10:100. [19] Qu WS, Tian DS, Guo ZB, et al. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation. 2012;9:178. [20] Kang ES, Ha KY, Kim YH. Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes. J Korean Med Sci. 2012;27(6):586-593. [21] Nishimura S, Yasuda A, Iwai H, et al. Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury. Mol Brain. 2013; 6:3. [22] Chen KB, Uchida K, Nakajima H, et al. Tumor necrosis factor-α antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine (Phila Pa 1976). 2011;36(17):1350-1358. [23] 刘长路,吴岩.干细胞移植治疗脊髓损伤的研究进展[J].中国组织工程研究与临床康复,2011,15(32):6051-6055. [24] 康德智,林建华,余良宏,等. 大鼠骨髓间充质干细胞静脉移植对脊髓损伤的修复作用[J]. 中华神经医学杂志, 2006,5(11):1117-1121. [25] Ide C, Nakai Y, Nakano N, et al. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat.Brain Res. 2010;1332:32-47. [26] Wang LJ, Zhang RP, Li JD. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Acta Neurochir (Wien). 2014;156(7):1409-1418. [27] Hirano T, Yasukawa K, Harada H, et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986;324(6092):73-76. [28] 刘云霞,孟杰,刘立新,等.不同细胞因子组合对体外培养人脐带血造血干细胞的扩增效果[J].中国组织工程研究与临床康复,2007,11(3):401-404. [29] 宗少晖,方晔,彭金珍,等.急性不完全脊髓损伤模型大鼠相关炎症因子的表达[J].中国组织工程研究,2014,18(18): 2806-2811. [30] Rose JJ, Bealmear B, Nedelkoska L, et al. Cytokines decrease expression of interleukin-6 signal transducer and leptin receptor in central nervous system glia. J Neurosci Res. 2009;87(14):3098-3106. [31] Little AR, O'Callagha JP. Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines. Neurotoxicology. 2001;22(5):607-618. [32] Leal-Filho MB. Spinal cord injury: From inflammation to glial scar. Surg Neurol Int. 2011;2:112. [33] Xia W, Peng GY, Sheng JT, et al.Neuroprotective effect of interleukin-6 regulation of voltage-gated Na+ channels of cortical neurons is time- and dose-dependent. Neural Regen Res. 2015; 10 (4): 610-617. [34] Pogue AI, Cui JG, Li YY, et al. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci Lett. 2010;476(1):18-22. [35] Tilgner J, Volk B, Kaltschmidt C. Continuous interleukin-6 application in vivo via macroencapsulation of interleukin-6-expressing COS-7 cells induces massive gliosis. Glia. 2001;35(3): 234-245. [36] Levison SW, Jiang FJ, Stoltzfus OK, et al. IL-6-type cytokines enhance epidermal growth factor-stimulated astrocyte proliferation. Glia. 2000;32(3):328-337. [37] 武亮,李建军,陈亮,等.抑制脊髓损伤后星形胶质细胞增殖和胶质瘢痕形成的研究进展[J].中国康复理论与实践, 2010, 16(3):201-204. [38] Cafferty WB, Gardiner NJ, Das P, et al. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci. 2004;24(18): 4432-4443. [39] Gadient RA, Otten U. Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res. 1994; 637 (1-2):10-14. [40] Leibinger M, Müller A, Gobrecht P, et al. Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis. 2013;4:e609. [41] Heaney ML, Golde DW. Soluble cytokine receptors. Blood. 1996;87(3):847-857. [42] Paterniti I, Impellizzeri D, Crupi R, et al. Molecular evidence for the involvement of PPAR-δ and PPAR-γ in anti-inflammatory and neuroprotective activities of palmitoylethanolamide after spinal cord trauma.J Neuroinflammation. 2013;10:20. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Geng Qiudong, Ge Haiya, Wang Heming, Li Nan. Role and mechanism of Guilu Erxianjiao in treatment of osteoarthritis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1229-1236. |
[3] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
[4] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[5] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[6] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[7] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[8] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[9] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[10] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[11] | Li Shibin, Lai Yu, Zhou Yi, Liao Jianzhao, Zhang Xiaoyun, Zhang Xuan. Pathogenesis of hormonal osteonecrosis of the femoral head and the target effect of related signaling pathways [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 935-941. |
[12] | Xu Yinqin, Shi Hongmei, Wang Guangyi. Effects of Tongbi prescription hot compress combined with acupuncture on mRNA expressions of apoptosis-related genes,Caspase-3 and Bcl-2, in degenerative intervertebral discs [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 713-718. |
[13] | Zhang Wenwen, Jin Songfeng, Zhao Guoliang, Gong Lihong. Mechanism by which Wenban Decoction reduces homocysteine-induced apoptosis of myocardial microvascular endothelial cells in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 723-728. |
[14] | Liu Qing, Wan Bijiang. Effect of acupotomy therapy on the expression of Bcl-2/Bax in synovial tissue of collagen-induced arthritis rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 729-734. |
[15] | Xie Chongxin, Zhang Lei. Comparison of knee degeneration after anterior cruciate ligament reconstruction with or without remnant preservation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 735-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||