Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (6): 1305-1311.doi: 10.12307/2025.317
Previous Articles Next Articles
Ma Haoyu, Qiao Hongchao, Hao Qianqian, Shi Dongbo
Received:2024-03-05
Accepted:2024-04-19
Online:2025-02-28
Published:2024-06-24
Contact:
Shi Dongbo, Professor, Master’s supervisor, College of Physical Education, Taiyuan University of Technology, Jinzhong 030600, Shanxi Province, China
About author:Ma Haoyu, Master candidate, College of Physical Education, Taiyuan University of Technology, Jinzhong 030600, Shanxi Province, China
CLC Number:
Ma Haoyu, Qiao Hongchao, Hao Qianqian, Shi Dongbo. Causal effects of different exercise intensities on the risk of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1305-1311.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 工具变量 经过初步筛选,选出了与运动强度相关的4个表型作为工具变量,分别提取出112,20,18和11个单核苷酸多态性,涉及到久坐行为(例如电视观看)、低强度运动(例如为娱乐而步行)、中强度运动(每周中的每天进行10 min以上运动)和高强度运动(每周中的每天进行10 min以上运动)。在匹配和去除离群值的基础上,最终确定了工具变量数量,并对其有效性进行了评估。结果显示,各工具变量的F统计量均超过10,表明不存在弱工具变量偏倚。此外,Q检验和PRESSO全局异质性检验的P > 0.05,暗示不存在异质性工具变量。MR-Egger截距项对应的P > 0.05,提示不存在方向多效性。 2.2 不同运动强度与膝骨关节炎的因果关系 图2展示了不同强度运动与膝骨关节炎的分析结果,逆方差加权法结果表明,以散步为代表的低强度运动是膝骨关节炎的保护因素(OR=0.14,95%CI:0.06-0.32,P < 0.001),而电视观看这种久坐行为是膝骨关节炎的危险因素(OR=2.24,95%CI:1.74-2.88,P < 0.001)。不同运动强度与膝骨关节炎的MR分析结果散点图,见图3,显示散点图回归线无明显偏移。 2.3 不同运动强度与髋骨关节炎的因果关系 逆方差加权法分析结果显示,久坐行为是髋骨关节炎的危险因素(OR=1.34,95%CI:1.01-1.78,P=0.04),5种方法因果效应方向一致(OR值均> 1),见图4。不同强度运动与髋骨关节炎的MR分析结果散点图,见图5,显示回归线无明显偏移,故提示久坐行为与髋骨关节炎有正向因果关系,久坐行为时间增长是髋骨关节炎发生的风险因素。在低、中、高强度运动与髋骨关节炎的分析中所有结果P均> 0.05,无因果关联。 2.4 敏感性分析结果 如表2所示,根据MR-Egger截距检验,所有P > "
| [1] MARTEL-PELLETIER J, BARR A J, CICUTTINI F M, et al.Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. [2] TANG X, WANG S, ZHAN S, et al. The Prevalence of Symptomatic Knee Osteoarthritis in China: Results From the China Health and Retirement Longitudinal Study. Arthritis Rheumatol. 2016;68(3):648-653. [3] 王斌,邢丹,董圣杰,等.中国膝骨关节炎流行病学和疾病负担的系统评价[J].中国循证医学杂志,2018,18(2):9. [4] 杨明义,苏亚妮,马尧,等.以软骨下骨硬化为靶点的骨关节炎治疗研究进展[J].中华关节外科杂志电子版,2021,15(2): 209-213. [5] GLYN-JONES S, PALMER AJ, AGRICOLA R, et al. Osteoarthritis. Lancet. 2015;386(9991): 376-387. [6] REDDIGAN JI, ARDERN CI, RIDDELL MC, et al. Relation of physical activity to cardiovascular disease mortality and the influence of cardiometabolic risk factors. Am J Cardiol. 2011;108(10):1426-1431. [7] GAY C, CHABAUD A, GUILLEY E, et al. Educating patients about the benefits of physical activity and exercise for their hip and knee osteoarthritis. Systematic literature review. Ann Phys Rehabil Med. 2016;59(3):174-183. [8] RESTUCCIA R, RUGGIERI D, MAGAUDDA L, et al. The preventive and therapeutic role of physical activity in knee osteoarthritis. Reumatismo. 2022;74(1). doi: 10.4081/reumatismo.2022.1466 [9] 曾令烽,杨伟毅,郭达,等.传统运动疗法干预对膝骨关节炎患者疼痛改善及关节功能影响的系统评价[J].中华中医药杂志,2018,33(5):2132-2139. [10] BERENBAUM F, WALLACE IJ, LIEBERMAN DE, et al. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018;14(11):674-681. [11] DAVEY SMITH G, EBRAHIM S, LEWIS S, et al. Genetic epidemiology and public health: hope, hype, and future prospects. Lancet. 2005;366(9495):1484-1498. [12] LAWLOR DA, HARBORD RM, STERNE JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. [13] HEMANI G, BOWDEN J, DAVEY SMITH G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195-r208. [14] LABRECQUE J, SWANSON SA. Understanding the Assumptions Underlying Instrumental Variable Analyses: a Brief Review of Falsification Strategies and Related Tools. Curr Epidemiol Rep. 2018;5(3):214-220. [15] SMITH GD, EBRAHIM S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1-22. [16] WIJNDAELE K, SHARP SJ, WAREHAM N J, et al. Mortality Risk Reductions from Substituting Screen Time by Discretionary Activities. Med Sci Sports Exerc. 2017;49(6): 1111-1119. [17] ZHU J, CHEN W, HU Y, et al. Physical activity patterns, genetic susceptibility, and risk of hip/knee osteoarthritis: a prospective cohort study based on the UK Biobank. Osteoarthritis Cartilage. 2022;30(8):1079-1090. [18] VAN DE VEGTE YJ, SAID MA, RIENSTRA M, et al. Genome-wide association studies and Mendelian randomization analyses for leisure sedentary behaviours. Nat Commun. 2020;11(1):1770. [19] BOER CG, HATZIKOTOULAS K, SOUTHAM L, et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell. 2021;184(18):4784-4818.e4717. [20] DIXON-SUEN SC, LEWIS SJ, MARTIN RM, et al. Physical activity, sedentary time and breast cancer risk: a Mendelian randomisation study. Br J Sports Med. 2022;56(20):1157-1170. [21] PRITCHARD JK, PRZEWORSKI M. Linkage disequilibrium in humans: models and data. Am J Hum Genet. 2001;69(1):1-14. [22] HARTWIG FP, DAVIES NM, HEMANI G, et al. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45(6):1717-1726. [23] HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. [24] BURGESS S, BUTTERWORTH A, THOMPSON SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658-665. [25] BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-525. [26] BOWDEN J, DAVEY SMITH G, HAYCOCK PC, et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016; 40(4):304-314. [27] GILL D. Heterogeneity Between Genetic Variants as a Proxy for Pleiotropy in Mendelian Randomization. JAMA Cardiol. 2020;5(1):107-108. [28] VERBANCK M, CHEN CY, NEALE B, et al. Publisher Correction: Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(8):1196. [29] SKOU ST, BRICCA A, ROOS EM. The impact of physical activity level on the short- and long-term pain relief from supervised exercise therapy and education: a study of 12,796 Danish patients with knee osteoarthritis. Osteoarthritis Cartilage. 2018;26(11):1474-1478. [30] JAKIELA JT, WAUGH EJ, WHITE DK. Walk At Least 10 Minutes a Day for Adults With Knee Osteoarthritis: Recommendation for Minimal Activity During the COVID-19 Pandemic. J Rheumatol. 2021;48(2):157-159. [31] MASTER H, THOMA LM, DUNLOP DD, et al.Joint Association of Moderate-to-vigorous Intensity Physical Activity and Sedentary Behavior With Incident Functional Limitation: Data From the Osteoarthritis Initiative. J Rheumatol. 2021;48(9):1458-1464. [32] CLARK BK, HEALY GN, WINKLER EA, et al. Relationship of television time with accelerometer-derived sedentary time: NHANES. Med Sci Sports Exerc. 2011;43(5): 822-828. [33] GAY C, GUIGUET-AUCLAIR C, MOURGUES C, et al. Physical activity level and association with behavioral factors in knee osteoarthritis. Ann Phys Rehabil Med. 2019;62(1):14-20. [34] HOLDEN MA, BUTTON K, COLLINS NJ, et al.Guidance for Implementing Best Practice Therapeutic Exercise for Patients With Knee and Hip Osteoarthritis: What Does the Current Evidence Base Tell Us? Arthritis Care Res (Hoboken). 2021;73(12):1746-1753. [35] KANG SH, JOO JH, PARK EC, et al. Effect of Sedentary Time on the Risk of Orthopaedic Problems in People Aged 50 Years and Older. J Nutr Health Aging. 2020;24(8):839-845. [36] ØIESTAD BE, JUHL CB, CULVENOR AG, et al.Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: an updated systematic review and meta-analysis including 46 819 men and women. Br J Sports Med. 2022;56(6):349-355. [37] BELVIRANLı M, OKUDAN N. Exercise training increases cardiac, hepatic and circulating levels of brain-derived neurotrophic factor and irisin in young and aged rats. Horm Mol Biol Clin Investig. 2018;36(3). doi: 10.1515/hmbci-2018-0053. [38] VADALÀ G, DI GIACOMO G, AMBROSIO L, et al. Irisin Recovers Osteoarthritic Chondrocytes In Vitro. Cells. 2020;9(6):1478. [39] RUNHAAR J, BEAVERS DP, MILLER GD, et al. Inflammatory cytokines mediate the effects of diet and exercise on pain and function in knee osteoarthritis independent of BMI. Osteoarthritis Cartilage. 2019;27(8):1118-1123. [40] BATTY GD, GALE CR, KIVIMÄKI M, et al. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020;368:m131. |
| [1] | Li Qingbin, Lin Jianhui, Huang Wenjie, Wang Mingshuang, Du Jiankai, Lao Yongqiang. Bone cement filling after enlarged curettage of giant cell tumor around the knee joint: a comparison of subchondral bone grafting and non-grafting [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 1896-1902. |
| [2] | Li Linzhen, Jiao Hongzhuo, Chen Weinan, Zhang Mingzhe, Wang Jianlong, Zhang Juntao. Effect of icariin-containing serum on lipopolysaccharide-induced inflammatory damage in human chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1368-1374. |
| [3] | Chen Ju, Zheng Jinchang, Liang Zhen, Huang Chengshuo, Lin Hao, Zeng Li. Effect and mechanism of beta-caryophyllene in mice with osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1341-1347. |
| [4] | Lyu Guoqing, Aizimaitijiang·Rouzi, Xiong Daohai. Irisin inhibits ferroptosis in human articular chondrocytes: roles and mechanisms [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1359-1367. |
| [5] | Wu Zhilin, , He Qin, Wang Pingxi, Shi Xian, Yuan Song, Zhang Jun, Wang Hao . DYRK2: a novel therapeutic target for rheumatoid arthritis combined with osteoporosis based on East Asian and European populations [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1569-1579. |
| [6] | Liu Hongtao, Wu Xin, Jiang Xinyu, Sha Fei, An Qi, Li Gaobiao. Causal relationship between age-related macular degeneration and deep vein thrombosis: analysis based on genome-wide association study data [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1602-1608. |
| [7] | Li Hao, Tao Hongcheng, Zeng Ping, Liu Jinfu, Ding Qiang, Niu Chicheng, Huang Kai, Kang Hongyu. Mitogen-activated protein kinase signaling pathway regulates the development of osteoarthritis: guiding targeted therapy with traditional Chinese medicine [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1476-1485. |
| [8] | Guo Ying, Tian Feng, Wang Chunfang. Potential drug targets for the treatment of rheumatoid arthritis: large sample analysis from European databases [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1549-1557. |
| [9] | Zhang Qian, Huang Dongfeng. Weighted gene co-expression network analysis combined with machine learning to screen and validate biomarkers for osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1096-1105. |
| [10] | Bu Yangyang, Ning Xinli, Zhao Chen. Intra-articular injections for the treatment of osteoarthritis of the temporomandibular joint: different drugs with multiple combined treatment options [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1215-1224. |
| [11] | Gao Zengjie, , Pu Xiang, Li Lailai, Chai Yihui, Huang Hua, Qin Yu. Increased risk of osteoporotic pathological fractures associated with sterol esters: evidence from IEU-GWAS and FinnGen databases [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1302-1310. |
| [12] | Liu Fengzhi, Dong Yuna, Tian Wenyi, Wang Chunlei, Liang Xiaodong, Bao Lin. Gene-predicted associations between 731 immune cell phenotypes and rheumatoid arthritis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1311-1319. |
| [13] | Zhang Cuicui, Chen Huanyu, Yu Qiao, Huang Yuxuan, Yao Gengzhen, Zou Xu. Relationship between plasma proteins and pulmonary arterial hypertension and potential therapeutic targets [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1331-1340. |
| [14] | Chen Yixian, Chen Chen, Lu Liheng, Tang Jinpeng, Yu Xiaowei. Triptolide in the treatment of osteoarthritis: network pharmacology analysis and animal model validation [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 805-815. |
| [15] | Yang Xiao, Bai Yuehui, Zhao Tiantian, Wang Donghao, Zhao Chen, Yuan Shuo. Cartilage degeneration in temporomandibular joint osteoarthritis: mechanisms and regenerative challenges [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 926-935. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||