Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (34): 7318-7325.doi: 10.12307/2025.895
Previous Articles Next Articles
Zhang Xiaoyu, Wei Shanwen, Fang Jiawei, Ni Li
Received:
2024-07-31
Accepted:
2024-11-05
Online:
2025-12-08
Published:
2025-01-17
Contact:
Ni Li, MD, Associate researcher, Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
About author:
Zhang Xiaoyu, Master candidate, Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
Supported by:
CLC Number:
Zhang Xiaoyu, Wei Shanwen, Fang Jiawei, Ni Li. Prussian blue nanoparticles restore mitochondrial function in nucleus pulposus cells through antioxidation[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(34): 7318-7325.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] WANG Y, VIDEMAN T, BATTIÉ MC. ISSLS Prize Winner: Lumbar Vertebral Endplate Lesions: Associations With Disc Degeneration and Back Pain History. Spine (Phila Pa 1976). 2012;37(17):1490-1496. [2] COSTĂCHESCU B, NICULESCU AG, TELEANU RI, et al. Recent Advances in Managing Spinal Intervertebral Discs Degeneration. Int J Mol Sci. 2022;23(12):6460. [3] BIBBY SR, JONES DA, LEE RB, et al. The pathophysiology of the intervertebral disc. Joint Bone Spine. 2001;68(6):537-542. [4] PENG BG. Pathophysiology, diagnosis, and treatment of discogenic low back pain. World J Orthop. 2013;4(2):42-52. [5] LIU C, GAO X, LOU J, et al. Aberrant mechanical loading induces annulus fibrosus cells apoptosis in intervertebral disc degeneration via mechanosensitive ion channel Piezo1. Arthritis Res Ther. 2023; 25(1):117. [6] SAMANTA A, LUFKIN T, KRAUS P. Intervertebral disc degeneration—Current therapeutic options and challenges. Front Public Health. 2023;11:1156749. [7] DUTT Y, PANDEY RP, DUTT M, et al. Therapeutic applications of nanobiotechnology. J Nanobiotechnology. 2023;21(1):148. [8] ZHANG Y, POON K, MASONSON GSP, et al. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics. 2023;15(3):922. [9] SONG C, XU Y, PENG Q, et al. Mitochondrial dysfunction: a new molecular mechanism of intervertebral disc degeneration. Inflamm Res. 2023;72(12):2249-2260. [10] SUZUKI S, FUJITA N, HOSOGANE N, et al. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Res Ther. 2015;17(1):316. [11] FENG H, DANFELTER M, STRÖMQVIST B, et al. Extracellular Matrix in Disc Degeneration. J Bone Joint Surg Am. 2006;88(suppl_2):25-29. [12] URBAN JP, SMITH S, FAIRBANK JC. Nutrition of the Intervertebral Disc. Spine (Phila Pa 1976). 2004;29(23):2700-2709. [13] GRUNHAGEN T, WILDE G, SOUKANE DM, et al. Nutrient Supply and Intervertebral Disc Metabolism. J Bone Joint Surg Am. 2006; 88(suppl_2):30-35. [14] MARTIN JA, MARTINI A, MOLINARI A, et al. Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthritis Cartilage. 2012;20(4):323-329. [15] RISBUD MV. Role of mitochondria in intervertebral disc health and disease. Orthop Proc. 2024;106-B(SUPP_1):101. [16] ZENG Z, ZHOU X, WANG Y, et al. Mitophagy—A New Target of Bone Disease. Biomolecules. 2022;12(10):1420. [17] SONG Y, LU S, GENG W, et al. Mitochondrial quality control in intervertebral disc degeneration. Exp Mol Med. 2021;53(7):1124-1133. [18] HE H, LONG M, DUAN Y, et al. Prussian blue nanozymes: progress, challenges, and opportunities. Nanoscale. 2023;15(31):12818-12839. [19] LI D, LIU M, LI W, et al. Synthesis of Prussian Blue Nanoparticles and Their Antibacterial, Antiinflammation and Antitumor Applications. Pharmaceuticals (Basel). 2022;15(7):769. [20] LIU Z, LUO Z, YU H, et al. Near-infrared light-controlled kartogenin delivery of multifunctional Prussian blue nanocomposites for cartilage defect repair. Nanoscale. 2023;15(20):9076-9093. [21] MA X, HAO J, WU J, et al. Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration. Adv Mater. 2022;34(15): 2106723. [22] ZHU Z, YU Q, LI H, et al. Vanillin-based functionalization strategy to construct multifunctional microspheres for treating inflammation and regenerating intervertebral disc. Bioact Mater. 2023;28:167-182. [23] HONG Y, DUAN Y, ZHU Z, et al. IL-1ra loaded chondroitin sulfate-functionalized microspheres for minimally invasive treatment of intervertebral disc degeneration. Acta Biomater. 2024;185:336-349. [24] YU Q, HAN F, YUAN Z, et al. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater. 2022;148:73-89. [25] KUAI J, ZHANG N. Upregulation of SIRT1 by Evodiamine activates PI3K/AKT pathway and blocks intervertebral disc degeneration. Mol Med Rep. 202;26(2):265. [26] RUSSO F, AMBROSIO L, PEROGLIO M, et al. A Hyaluronan and Platelet-Rich Plasma Hydrogel for Mesenchymal Stem Cell Delivery in the Intervertebral Disc: An Organ Culture Study. Int J Mol Sci. 2021;22(6):2963. [27] ZHOU X, SHEN N, TAO Y, et al. Nucleus pulposus cell-derived efficient microcarrier for intervertebral disc tissue engineering. Biofabrication. 2023;15(2):025008. [28] CHEN W, YASEN M, WANG H, et al. Celecoxib activates autophagy by inhibiting the mTOR signaling pathway and prevents apoptosis in nucleus pulposus cells. BMC Pharmacol Toxicol. 2022;23(1):90. [29] LIU C, FAN L, GUAN M, et al. A Redox Homeostasis Modulatory Hydrogel with GLRX3+ Extracellular Vesicles Attenuates Disc Degeneration by Suppressing Nucleus Pulposus Cell Senescence. ACS Nano. 2023;17(14):13441-13460. [30] PENG X, ZHANG C, GAO JW, et al. A20 ameliorates disc degeneration by suppressing mTOR/BNIP3 axis-mediated mitophagy. Genes Genomics. 2023;45(5):657-671. [31] YANG W, JIA C, LIU L, et al. Hypoxia-Inducible Factor-1α Protects Against Intervertebral Disc Degeneration Through Antagonizing Mitochondrial Oxidative Stress. Inflammation. 2023;46(1):270-284. [32] ZHANG F, ZHAO X, SHEN H, et al. Molecular mechanisms of cell death in intervertebral disc degeneration. Int J Mol Med, 2016;37(6):1439-1448. [33] LUO H, WANG Z, YU F, et al. Injectable and Microporous Microgel Assembly with Sequential Bioactive Factor Release for the Endogenous Repair of Nucleus Pulposus. Adv Funct Mater. 2024; 34(25):2315592. [34] WANG H, CHEN S, LIU Z, et al. Preserving the Immune-Privileged Niche of the Nucleus Pulposus: Safeguarding Intervertebral Discs from Degeneration after Discectomy with Synthetic Mucin Hydrogel Injection. Adv Sci. 2024:e2404496. doi: 10.1002/advs.202404496. [35] LI Z, YANG H, HAI Y, et al. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm. 2023;2023(1):6210885. [36] CAO G, YANG S, CAO J, et al. The Role of Oxidative Stress in Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2022;2022(1): 2166817. [37] ZHANG Y, LIU L, QI Y, et al. Lactic acid promotes nucleus pulposus cell senescence and corresponding intervertebral disc degeneration via interacting with Akt. Cell Mol Life Sci. 2024;81(1):24. [38] WANG B, KE W, WANG K, et al. Mechanosensitive Ion Channel Piezo1 Activated by Matrix Stiffness Regulates Oxidative Stress-Induced Senescence and Apoptosis in Human Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2021;2021(1):8884922. [39] CHEN X, ZHANG A, ZHAO K, et al. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev. 2024;98:102323. [40] WANG Y, CHENG H, WANG T, et al. Oxidative stress in intervertebral disc degeneration: Molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023;56(9):e13448. [41] CHENG F, YANG H, CHENG Y, et al. The role of oxidative stress in intervertebral disc cellular senescence. Front Endocrinol (Lausanne). 2022;13:1038171. [42] HU S, ZHU M, XING H, et al. Thread-structural microneedles loaded with engineered exosomes for annulus fibrosus repair by regulating mitophagy recovery and extracellular matrix homeostasis - ScienceDirect. Bioact Mater. 2024;37:1-13. [43] ZHANG H, TSUI CK, GARCIA G, et al. The extracellular matrix integrates mitochondrial homeostasis. Cell. 2024;187(16):4289-4304.e26. [44] ZHANG W, HU S, YIN J J, et al. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. J Am Chem Soc. 2016;138(18):5860-5865. [45] ZHANG DY, LIU H, ZHU KS, et al. Prussian blue-based theranostics for ameliorating acute kidney injury. J Nanobiotechnology. 2021;19(1):266. [46] GAO Y, YU G, XING K, et al. Finely tuned Prussian blue-based nanoparticles and their application in disease treatment. J Mater Chem B. 2020;8(32):7121-7134. [47] GOROSPE CM, CARVALHO G, CURBELO AH, et al. Mitochondrial membrane potential acts as a retrograde signal to regulate cell cycle progression. Life Sci Alliance. 2023;6(12):e202302091. |
[1] |
Dong Chunyang, Zhou Tianen, Mo Mengxue, Lyu Wenquan, Gao Ming, Zhu Ruikai, Gao Zhiwei.
Action mechanism of metformin combined with Eomecon chionantha Hance dressing in treatment of deep second-degree burn wounds#br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2001-2013.
|
[2] | Yang Xuetao, Zhu Menghan, Zhang Chenxi, Sun Yimin, Ye Ling. Applications and limitations of antioxidant nanomaterials in oral cavity [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2044-2053. |
[3] | Hou Chaowen, Li Zhaojin, Kong Jianda, Zhang Shuli. Main physiological changes in skeletal muscle aging and the multimechanism regulatory role of exercise [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1464-1475. |
[4] | Yang Xiao, Bai Yuehui, Zhao Tiantian, Wang Donghao, Zhao Chen, Yuan Shuo. Cartilage degeneration in temporomandibular joint osteoarthritis: mechanisms and regenerative challenges [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 926-935. |
[5] | Gu Jianmei, Yuan Kunshan, Zhou Qiang, Zhang Haijun, , . Application of laser microporous decellularized scaffolds in tissue regeneration [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 499-507. |
[6] | Dong Chao, Zhao Mohan, Liu Yunan, Yang Zeli, Chen Leqin, Wang Lanfang. Effects of magnetic nano-drug carriers on exercise-induced muscle injury and inflammatory response in rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(2): 345-353. |
[7] | Wu Zhijing, Li Jiali, Zhang Jiaxin, Wang Tangrong, Zheng Yuzhou, Sun Zixuan. Alpha-ketoglutarate engineered small extracellular vesicles delay skin aging [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(1): 120-129. |
[8] | Lai Pengyu, Liang Ran, Shen Shan. Tissue engineering technology for repairing temporomandibular joint: problems and challenges [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(在线): 1-9. |
[9] | Zhao Jiyu, Wang Shaowei. Forkhead box transcription factor O1 signaling pathway in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(9): 1923-1930. |
[10] | He Guanghui, Yuan Jie, Ke Yanqin, Qiu Xiaoting, Zhang Xiaoling. Hemin regulates mitochondrial pathway of oxidative stress in mouse chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1183-1191. |
[11] | He Bo, Chen Wen, Ma Suilu, He Zhijun, Song Yuan, Li Jinpeng, Liu Tao, Wei Xiaotao, Wang Weiwei, Xie Jing . Pathogenesis and treatment progress of flap ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(6): 1230-1238. |
[12] | Lu Ranran, Zhou Xu, Zhang Lijie, Yang Xinling. Dimethyl fumarate alleviates nerve damage in a mouse model of Parkinson’s disease [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(5): 989-994. |
[13] | Sima Xinli, Liu Danping, Qi Hui. Effect and mechanism of metformin-modified bone marrow mesenchymal stem cell exosomes on regulating chondrocytes [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7728-7734. |
[14] | Shui Jing, He Yu, Jiang Nan, Xu Kun, Song Lijuan, Ding Zhibin, Ma Cungen, Li Xinyi. Astrocytes regulate remyelination in central nervous system [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7889-7897. |
[15] | Liu Xuan, Ding Yuqing, Xia Ruohan, Wang Xianwang, Hu Shujuan. Exercise prevention and treatment of insulin resistance: role and molecular mechanism of Keap1/nuclear factor erythroid2-related factor 2 signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7578-7588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||