Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (28): 4565-4571.doi: 10.12307/2024.463
Previous Articles Next Articles
Chu Kai, Sun Jianhua
Received:
2022-11-10
Accepted:
2023-09-02
Online:
2024-10-08
Published:
2023-11-27
Contact:
Sun Jianhua, MD, Chief physician, Orthopedic Center, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
About author:
Chu Kai, Master, Orthopedic Center, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
CLC Number:
Chu Kai, Sun Jianhua. Effects of long intergenic non-protein coding RNA 00707 on chondrocyte injury and inflammatory factor secretion in osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(28): 4565-4571.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 转染试剂对关节软骨细胞各指标表达的影响 与IL-1β组比较,IL-1β+si-NC组、IL-1β+miR-NC组关节软骨细胞中LINC00707与miR-423-5p基因表达量无明显变化(P > 0.05),细胞凋亡数量与细胞凋亡率无明显变化(P > 0.05),裂解caspase3、裂解caspase9蛋白表达无明显变化(P > 0.05),培养液中炎性因子肿瘤坏死因子α、白细胞介素6及白细胞介素10水平无明显变化(P > 0.05)。与IL-1β+si-LINC00707组比较,IL-1β+si-LINC00707+anti-miR-NC组关节软骨细胞中LINC00707与miR-423-5p基因表达量无明显变化(P > 0.05),细胞凋亡数量与细胞凋亡率无明显变化(P > 0.05),裂解caspase3、裂解caspase9蛋白表达无明显变化(P > 0.05),培养液中炎性因子肿瘤坏死因子α、白细胞介素6及白细胞介素10水平无明显变化(P > 0.05)。具体数据见如下介绍。 2.2 抑制LINC00707对IL-1β诱导关节软骨细胞损伤的影响 与空白对照组相比,IL-1β组关节软骨细胞中LINC00707基因表达量增加、miR-423-5p基因表达量减少,细胞凋亡及裂解caspase3、裂解caspase9蛋白表达量增加(P均< 0.05);与IL-1β组相比,IL-1β+si-LINC00707组关节软骨细胞中LINC00707基因表达量减少、miR-423-5p基因表达量增加,细胞凋亡及裂解caspase3、裂解caspase9蛋白表达量减少(P均< 0.05),见表1、图1-3。"
[1] ANSARI MY, AHMAD N, HAQQI TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother. 2020;129(9):110452-110470. [2] WU Y, LU X, SHEN B, et al. The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis. Curr Gene Ther. 2019;19(4): 255-263. [3] JANG S, LEE K, JU JH. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci. 2021;22(5): 2619-2634. [4] XIE W, JIANG L, HUANG X, et al. lncRNA MEG8 is downregulated in osteoarthritis and regulates chondrocyte cell proliferation, apoptosis and inflammation. Exp Ther Med. 2021;22(4):1153-1160. [5] WANG Z, HUANG C, ZHAO C, et al. Knockdown of LINC01385 inhibits osteoarthritis progression by modulating the microRNA-140-3p/TLR4 axis. Exp Ther Med. 2021;22(5):1244-1253. [6] OU D, DING W, TONG C, et al. Knockdown of Long Non-coding RNA LINC00473 Protects CHON-001 Cells against Interleukin-1β-Induced Cell Injury. Biol Pharm Bull. 2021;44(2):232-237. [7] QIAN M, SHI Y, LU W. LINC00707 knockdown inhibits IL-1β-induced apoptosis and extracellular matrix degradation of osteoarthritis chondrocytes by the miR-330-5p/FSHR axis. Immunopharmacol Immunotoxicol. 2022;44(5):671-681. [8] XU Y, DUAN L, LIU S, et al. Long intergenic non-protein coding RNA 00707 regulates chondrocyte apoptosis and proliferation in osteoarthritis by serving as a sponge for microRNA-199-3p. Bioengineered. 2022;13(4):11137-11145. [9] GUO H, LI J, FAN F, et al. LINC00707 Regulates miR-382-5p/VEGFA Pathway to Enhance Cervical Cancer Progression. J Immunol Res. 2021; 2021(6):5524632-5524640. [10] ZHANG XR, SHAO JL, LI H, et al. Silencing of LINC00707 suppresses cell proliferation, migration, and invasion of osteosarcoma cells by modulating miR-338-3p/AHSA1 axis. Open Life Sci. 2021;16(1):728-736. [11] PERTUSA C, TARÍN JJ, CANO A, et al. Serum microRNAs in osteoporotic fracture and osteoarthritis: a genetic and functional study. Sci Rep. 2021;11(1):19372-19382. [2] MCALPINE SM, ROBERTS SE, HARGREAVES BKV, et al. Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. J Rheumatol. 2023;50(2):227-235. [13] CHEN K, FANG H, XU N. LncRNA LOXL1-AS1 is transcriptionally activated by JUND and contributes to osteoarthritis progression via targeting the miR-423-5p/KDM5C axis. Life Sci. 2020;258(10):118095-118105. [14] LV S, WANG X, JIN S, et al. Quercetin mediates TSC2-RHEB-mTOR pathway to regulate chondrocytes autophagy in knee osteoarthritis. Gene. 2022;820(4):146209-146218. [15] YU H, HUANG T, LU WW, et al. Osteoarthritis Pain. Int J Mol Sci. 2022; 23(9):4642-4663. [16] KOLASINSKI SL, NEOGI T, HOCHBERG MC, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken). 2020;72(2):149-162. [17] KATZ JN, ARANT KR, LOESER RF. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA. 2021;325(6):568-578. [18] MOLNAR V, MATIŠIĆ V, KODVANJ I, et al. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci. 2021;22(17): 9208-9230. [19] CHIEN SY, TSAI CH, LIU SC, et al. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis. Cells. 2020;9(4): 927-944. [20] 郭秀珍,高斌礼,郭文,等.LncRNA FGD5-AS1靶向miR-103a-3p对IL-1β诱导的关节软骨细胞凋亡的机制研究[J].中国骨质疏松杂志, 2020,26(6):832-837. [21] LIU C, CHEN Y. Ketorolac tromethamine alleviates IL-1β-induced chondrocyte injury by inhibiting COX-2 expression. Exp Ther Med. 2022;23(5):337-344. [22] SHI X, JIE L, WU P, et al. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways. J Ethnopharmacol. 2022;297(10):115536-115546. [23] ZHANG Z, ZHANG NZ, LI M, et al. Sappanone A Alleviated IL-1β-Induced Inflammation in OA Chondrocytes through Modulating the NF-κB and Nrf2/HO-1 Pathways. Dis Markers. 2022;2022(9):2380879-2380889. [24] WANG L, HE C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 2022;13(8):967193-967212. [25] HUANG Y, CHEN D, YAN Z, et al. LncRNA MEG3 Protects Chondrocytes From IL-1β-Induced Inflammation via Regulating miR-9-5p/KLF4 Axis. Front Physiol. 2021;12(3):617654-617663. [26] ZOU X, GAO C, SHANG R, et al. Knockdown of lncRNA LINC00707 alleviates LPS-induced injury in MRC-5 cells by acting as a ceRNA of miR-223-5p. Biosci Biotechnol Biochem. 2021;85(2):315-323. [27] ZHU S, ZHOU Z, LI Z, et al. Suppression of LINC00707 alleviates lipopolysaccharide-induced inflammation and apoptosis in PC-12 cells by regulated miR-30a-5p/Neurod 1. Biosci Biotechnol Biochem. 2019;83(11):2049-2056. [28] YAO Q, LI Z, CHEN D. Review of LINC00707: A Novel LncRNA and Promising Biomarker for Human Diseases. Front Cell Dev Biol. 2022; 10(1):813963-813974. [29] 徐显春,齐保闯,邱宇.LINC00707靶向miR-224-3p调控IL-1β诱导的软骨细胞损伤[J].现代医学,2021,49(5):520-525. [30] YANG Y, YUJIAO W, FANG W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 2020;53(1):40-57. [31] WANG JY, YANG Y, MA Y, et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother. 2020; 121(1):109627-109636. [32] TU J, ZHAO Z, XU M, et al. LINC00707 contributes to hepatocellular carcinoma progression via sponging miR-206 to increase CDK14. J Cell Physiol. 2019;234(7):10615-10624. [33] MU X, WANG H, LI H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Exp Lung Res. 2021;47(4):183-197. [34] XU Y, ZHANG J, FAN L, et al. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem Biophys Res Commun. 2018;505(2):339-345. [35] HOU Y, ZHANG Y, LIN S, et al. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. Am J Transl Res. 2021;13(4):2006-2020. [36] CHEN K, FANG H, XU N. LncRNA LOXL1-AS1 is transcriptionally activated by JUND and contributes to osteoarthritis progression via targeting the miR-423-5p/KDM5C axis. Life Sci. 2020;258(10):118095-118105. |
[1] | Li Yongjie, Fu Shenyu, Xia Yuan, Zhang Dakuan, Liu Hongju. Correlation of knee extensor muscle strength and spatiotemporal gait parameters with peak knee flexion/adduction moment in female patients with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1354-1358. |
[2] | Qi Haodong, Lu Chao, Xu Hanbo, Wang Mengfei, Hao Yangquan. Effect of diabetes mellitus on perioperative blood loss and pain after primary total knee arthroplasty [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1383-1387. |
[3] | Du Changling, Shi Hui, Zhang Shoutao, Meng Tao, Liu Dong, Li Jian, Cao Heng, Xu Chuang. Efficacy and safety of different applications of tranexamic acid in high tibial osteotomy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1409-1413. |
[4] | Yang Yifeng, Ye Nan, Wang Lin, Guo Shuaicheng, Huang Jian. Signaling pathway of dexmedetomidine against ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1464-1469. |
[5] | Huang Xiarong, Hu Lizhi, Sun Guanghua, Peng Xinke, Liao Ying, Liao Yuan, Liu Jing, Yin Linwei, Zhong Peirui, Peng Ting, Zhou Jun, Qu Mengjian. Effect of electroacupuncture on the expression of P53 and P21 in articular cartilage and subchondral bone of aged rats with knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1174-1179. |
[6] | Yue Yun, Wang Peipei, Yuan Zhaohe, He Shengcun, Jia Xusheng, Liu Qian, Li Zhantao, Fu Huiling, Song Fei, Jia Menghui. Effects of croton cream on JNK/p38 MAPK signaling pathway and neuronal apoptosis in cerebral ischemia-reperfusion injury rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1186-1192. |
[7] | Zhao Garida, Ren Yizhong, Han Changxu, Kong Lingyue, Jia Yanbo. Mechanism of Mongolian Medicine Erden-uril on osteoarthritis in rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1193-1199. |
[8] | Li Rui, Zhang Guihong, Wang Tao, Fan Ping. Effect of ginseng polysaccharide on the expression of prostaglandin E2/6-keto-prostaglandin 1alpha in traumatic osteoarthritis model rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1235-1240. |
[9] | Wang Weiqing, Zhou Yue. Chronic inflammation regulates adipose tissue fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1307-1312. |
[10] | Zhang Kefan, Shi Hui. Research status and application prospect of cytokine therapy for osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 961-967. |
[11] | Zhang Zeyi, Yang Yimin, Li Wenyan, Zhang Meizhen. Effect of foot progression angle on lower extremity kinetics of knee osteoarthritis patients of different ages: a systematic review and meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 968-975. |
[12] | Shen Feiyan, Yao Jixiang, Su Shanshan, Zhao Zhongmin, Tang Weidong. Knockdown of circRNA WD repeat containing protein 1 inhibits proliferation and induces apoptosis of chondrocytes in knee osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 499-504. |
[13] | Maisituremu·Heilili, Zhang Wanxia, Nijiati·Nuermuhanmode, Maimaitituxun·Tuerdi. Effect of intraarticular injection of different concentrations of ozone on condylar histology of rats with early temporomandibular joint osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 505-509. |
[14] | Qiao Hujun, Wang Guoxiang. Evaluation of rat osteoarthritis chondrocyte models induced by interleukin-1beta [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 516-521. |
[15] | Chen Zepeng, Hou Yonghui, Chen Shudong, Hou Yu, Lin Dingkun. Tauroursodeoxycholic acid treats spinal cord injury by reducing apoptosis of spinal cord neurons under glucose and oxygen deprivation [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 528-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||