Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (14): 2285-2290.doi: 10.3969/j.issn.2095-4344.2017.14.025
Previous Articles Next Articles
Sun Yu-liang1, Xiong Xiao-ming2, He Ben-xiang1, Wu Xiao1, Xian Jie1
Received:
2016-11-23
Online:
2017-05-18
Published:
2017-06-10
Contact:
Xiong Xiao-ming, Chief physician, Professor, Sichuan Province Orthopedic Hospital, Chengdu 610041, Sichuan Province, China
About author:
Sun Yu-liang, Studying for master’s degree, Chengdu Sport University, Chengdu 610041, Sichuan Province, China
Supported by:
the Key Plan of Sichuan Provincial Science and Technology Department, No. 2015SZ0190; the National Key Technology Research & Development Program, No. 2012BAK21B01-02
CLC Number:
Sun Yu-liang, Xiong Xiao-ming, He Ben-xiang, Wu Xiao, Xian Jie. Research progress of bone filling materials in percutaneous vertebroplasty[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(14): 2285-2290.
2.1 PMMA骨水泥 PMMA骨水泥是最先作为骨填充材料应用于椎体成形中的。PMMA的优点:①制备方便,术中准备快,黏度低,具有适度流动性,便于术中推注且聚合快;②生物力学性能强,其强度介于松质骨和皮质骨之间,抗压强度大,骨水泥分布伤椎骨裂缝中,可快速恢复椎体强度和刚度,稳定椎体,达到快速止痛的效果,弥散性较好,分部均匀,可使患者快速恢复活动;③不透射线性,在手术过程中可追踪填充材料的运动,指导手术操作,预防骨水泥渗漏等并发症;③生物力学实验也证实PMMA具备足够的强度支撑静态和动态的压力;④PMMA固化时释放大量的热量,对肿瘤细胞有一定的杀灭作用,破坏椎体内血管和神经,达到缓解疼痛的目的,价格也相对低廉。PMMA凭借其直接的止痛效果和良好的机械强度,使得椎体在注入PMMA后可以维持椎体形态,稳定骨折端,从而被常规用于椎体成形中。 然而该种骨填充材料也具有诸多不足之处[12]:①骨水泥渗漏:骨水泥渗漏是PMMA骨水泥最常见的并发症[13]。由于PMMA骨水泥黏度低,流动性较强,易发生骨水泥渗漏。常见渗漏部包括椎管内渗漏、椎间孔渗漏、椎间盘渗漏、椎旁软组织渗漏、椎旁静脉渗漏、穿刺针道渗漏、上下终板渗漏等,其中最严重的并发症是椎管内渗漏。如今虽术中C型臂X射线机透视检查,但经皮椎体后凸成形骨水泥渗漏仍约10%[14]。Lee等[15]对经皮椎体后凸成形和经皮椎体成形的并发症进行荟萃分析得出经皮椎体成形的无症状骨水泥渗漏率为75%, 经皮椎体后凸成形为14%;经皮椎体成形的有症状骨水泥渗漏率为1.48%,经皮椎体后凸成形为0.04%。Taylor等荟萃分析结果显示经皮椎体成形高达40%,经皮椎体后凸成形渗漏率为8%;Hulme等[16]系统回顾分析了69个临床研究的结果,发现总体渗漏率经皮椎体成形高达41%。而经皮椎体后凸成形为9%。Phillips等[17]报道经皮椎体后凸成形的骨水泥渗漏发生率明显低于经皮椎体成形,经皮椎体成形的骨水泥渗漏率在骨质疏松性椎体压缩骨折约为30%;经皮椎体后凸成形的渗漏率在骨质疏松性椎体压缩骨折为1%-2%,有症状性的骨水泥渗漏发生率更低。虽然大部分渗漏不会发生严重的不良反应,但如渗漏到椎管内可压迫脊髓,或者渗漏到血液中会发生肺栓塞等严重并发症[18];②放热反应:PMMA骨水泥在聚合时产生大量热量,可灼伤周围重要组织,造成椎体内骨、神经和血管死亡,影响骨折愈合。Yu等[19]的研究表明,这样的反应温度在椎体前缘、椎体中心和椎管内许多时候都超过50 ℃,且持续时间分别为5,8,25 min;③毒性反应:PMMA骨水泥具有毒性,抑制细胞生长和DNA合成;还有过敏反应,降低了局部抗炎能力,诱导肿瘤发生,可引起心肌抑制及凝血机制改变,容易引起心率失常、血压改变等心血管系统并发症[20];④无骨诱导性:PMMA骨水泥生物活性不足,无骨诱导骨作用,不可降解,长期存在于体内容易出现椎体松质骨与坚硬骨水泥界面的松动,增加再骨折风险[21]。组织学证实,PMMA骨水泥是通过纤维组织层环绕植入物这种方式达到愈合的,而纤维组织包绕植入物会潜在抑制骨质和PMMA多聚体界面之间的骨融合,使得PMMA与新生骨之间无法融合成为一个整体[22];⑤生物力学方面,注入PMMA骨水泥后不仅增加治疗椎体的强度,而且也改变了邻近椎体的力学负荷。生物力学的有限元法研究表明,注入PMMA不仅增加伤椎的刚度,而且增加邻近椎体的压力。这样不仅会引发原有椎体未被PMMA骨水泥填充部分骨质发生骨折,也增加了邻近椎体继发骨折[23]。所以根据PMMA骨水泥的优缺点,虽然现阶段仍是最常使用的椎体成形骨填充材料,但并非是的理想填充剂。 2.2 磷酸钙骨水泥 磷酸钙是近年来研究最多一种新型骨水泥。磷酸钙具备以下优点:①无产热反应:磷酸钙具有自固化性,固化时间一般在15 min以内,较PMMA骨水泥固化时间长,固化时散热少,无产热反应,对机体组织也无明显致炎反应[24]。研究表明,术后早期磷酸钙骨水泥缓解疼痛的机制是骨水泥对骨折椎体的加固与强化,恢复了骨折椎体的稳定性,但磷酸钙骨水泥聚合时无放热反应,且无单体毒性,对周围组织及感觉神经末梢无损伤作用[25],这可能是术后1周疼痛缓解较PMMA明显的原因;②骨诱导作用[26]:磷酸钙骨水泥具有良好的骨诱导能力,能促进骨折断端愈合,修复骨缺损。苗军等[27]应用磷酸钙治疗兔颅骨缺损及骨膜修复,术后3个月显示磷酸钙骨水泥被新生骨质紧紧包绕着,而且骨膜下植入的磷酸钙周围也生成新骨,未发现明显炎性细胞浸润。Wang等[28]运用磷酸钙修补颅骨缺损患者,术后半年复查显示缺损区已良好重建;③不透射线性[29]:磷酸钙与PMMA一样,具有成影性,在手术过程中可追踪其运动,预防骨水泥渗漏;④磷酸钙的生物力学强度介于正常椎体和骨质疏松椎体之间,可减少术后因治疗椎体强度发生改变而引起的邻近椎体再骨折风险;⑤生物降解性:即吸收现象,Libiche等[30]用磷酸钙骨水泥作为骨填充材料,术后12个月时,磷酸钙体积平均减少0.08 mL,吸收比率为2%。此外,磷酸钙可作为药物载体在临床骨缺损修复手术中实现向局部组织长时间释放药物,达到局部药物高浓度,延长药物有效治疗时间[31-32]。阮孜炜等[33]用磷酸钙承载6.5%妥布霉素,在保留磷酸钙骨传导作用、生物相容性、可降解等特性的同时,骨水泥在体内的凝结时间却随着药物含量的不断增加而相应延长,因此需要控制承载药物的含量,磷酸钙在常温下结晶硬化,它硬化后的多孔结构允许骨在其内生长,同时避免热损伤。 磷酸钙也有本身的不足:①高黏度性:磷酸钙的黏度相对较高,可注射性较差,配置及术中推注时有一定困难;②被冲刷问题:磷酸钙的亲水特性及较低的密度,使得磷酸钙在注入过程中更容易被血冲刷掉,导致注射失败且具有更高的渗漏可能[34];③磷酸钙吸收过早过快,使得椎体形态结构恢复失败,会影响椎体稳定性,甚至造成治疗椎体再骨折。有报道注射磷酸钙治疗后1个月的椎体,在无外伤情况下发生再骨折[35]。此外,Ryu等[36]观察到,因为磷酸钙的吸收,治疗椎体术后高度恢复虽较理想,但在之后的随访中会发生椎体高度再次丢失。Heo等[37]通过椎体成形后随访2年以上观察到,磷酸钙注射进入椎体后的形态变化是多样且不可预测的,有再吸收、沉积、诱导骨生成、骨折及异位骨化可能;③磷酸钙生物力学性能低,可注射磷酸钙脆性较大,降解速度慢与新骨生成速度不相匹配[38],新生成的骨组织维持也存在一定问题;④磷酸钙强度低于正常骨质,达不到要求,影响骨强度的维持[39-40]。磷酸钙是椎体成形中一种比较理想的替代材料。 2.3 硫酸钙骨水泥 硫酸钙作为人工合成的骨填充剂,具有以下优点:①良好的生物相容性,没有排异反应和炎症反应,并且可完全降解吸收;②良好的生物力学性能[41]:硫酸钙可作为椎体压缩性骨折部位的填充,可恢复原有脊柱单位的力学性能,降低术后椎体高度的丢失。目前新型可注射性硫酸钙应用于椎体成形的强度和刚度与PMMA相当。张军华等[42]研究表明,硫酸钙可提高骨质疏松性椎体骨密度,强化骨质疏松椎体的力学强度,有利于避兔或减少骨质疏松椎体再骨折的风险;③骨诱导和骨传导作用[43]:在硫酸钙的降解过程中,形成的局部酸性环境可导致周围正常松质骨脱钙,脱钙可激发周围骨质中各种骨诱导因子的活性,增加血钙浓度,有利于新骨形成,其吸收速度与新骨形成速度相当。于晓巍等[44]实验证明,硫酸钙可促进新骨生成,提高血钙浓度,尤其能有效修复骨质疏松性骨缺损。硫酸钙颗粒间的孔隙允许血管长入和液体交换,成骨细胞可吸附于硫酸钙表面,破骨细胞可在硫酸钙表而形成吸收陷窝,随着硫酸钙颗粒的吸收,硫酸钙晶体为细胞吸附及细胞增殖提供附着表面,当新骨形成开始,成骨细胞分泌基质形成其依附表面,同时硫酸钙晶体吸收降解,新骨在硫酸钙表面爬行生长,在硫酸钙周边形成环形的新生骨[45];④硫酸钙不仅具有良好的成骨性能,而且能诱导骨活性。其骨诱导性主要是由于钙离子与钙敏感受体结合后促进了细胞有丝分裂,进而诱导骨髓间充质干细胞向成骨细胞分化[46-47];⑤生物载药性:硫酸钙作为药物缓释载体,在控制感染的同时也可促进骨缺损修复。Jia等[48]通过实验证实,用硫酸钙抗生素载体填充清创后的骨缺损死腔,可维持和提高局部药物浓度,抑制细菌生长,并参与新骨形成过程。Ding 等[49]将负载万古霉素的硫酸钙材料治疗外伤所致感染性骨髓炎,结果取得了良好的效果。黄玉龙等[50]证实,用万古霉素与美罗培南的硫酸钙骨移植替代物预防开放性骨质感染,治疗效果确实、有效。张军华等[51]硫酸钙骨水泥强化骨质疏松绵羊腰椎的生物力学研究表明硫酸钙骨水泥可以提高骨质疏松性椎体的骨密度,可强化骨质疏松椎体的力学强度,有利于避兔或减少骨质疏松椎体再骨折的风险。 硫酸钙也存在不足[52],如术中显影不足,难以在术中观察监测,可注射性差,止痛效果不如PMMA,生物力学强度较正常骨组织低等。硫酸钙是一种较好的椎体骨折的骨填充剂,但不是理想填充材料。 2.4 复合骨水泥 复合骨水泥是将两种骨填充材料复合而成或对其进行改进的新一代骨填充材料,最初是作为一种可吸收人工骨吸收材料而被研制的。复合骨水泥具有良好的生物相容性和骨诱导性。混合介孔硅酸钙/磷酸钙骨水泥机械强度高,降解速度快,具有良好的细胞相容性,是修复骨缺损的较理想的材料[53]。张树芳等[54]通过实验证明,复合骨水泥用于骨质疏松压缩性骨折能满足对椎体填充材料的生物力学要求,且止痛效果明显迅速。当磷酸钙和无定形硫酸钙的复合骨水泥质量比20∶80时,所得到的骨水泥机械强度较强,凝结时间缩短,是良较好的骨填充材料[55]。余雷等[56]研究证明,重组人骨形成蛋白2/明胶微球/磷酸钙微球系统复合材料在体内易降解,具有良好成骨活性,是良好的骨修复材料。复合重组人骨形成蛋白2的壳聚糖微球/可注射磷酸钙具有较理想的成骨性能,是一种有应用前景的新型可注射骨移植材料[57]。厉孟等[58]通过实验证实复合明胶微球可显著提高磷酸钙骨水泥的孔径率促进其降解,增强其生物活性,增加其强度,可作为良好非负重部位的骨替代物。实验证明,复合重组人骨形成蛋白2的骨水泥对成骨细胞的具有明显的促进生长和诱导分化作用[59-60]。可注射磷酸钙骨水泥/丝素蛋白/重组人骨形态发生蛋白2复合骨水泥在绵羊的椎体成形术中修复骨缺损可以发现其对骨生成具有明显的促进作用,还可一定程度提高骨水泥的降解速度[61]。孟丹等[62]研究证明,壳聚糖微球/磷酸三钙骨水泥在骨组织内具有良好的生物相容性和骨结合能力,在骨修复过程中较α-磷酸三钙骨水泥降解速度快,并可引导新骨生成。将锌子添加到的磷酸钙骨水泥中,对兔子股骨和胫骨缺损模型进行修复,可明显促进新骨生成,但锌子不同的添加量可以引起不同程度的组织炎症反应,含0. 03%锌的骨水泥对周围组织的刺激作用较小,促进骨再生作用最佳[63]。复合藻脱酸盐磷酸钙骨水泥不但能获得理想的孔隙率,对小鼠骨髓基质细胞的增殖和分化也有明显的促进作用[64]。将复合藻脱酸盐磷酸钙骨水泥置入小鼠头盖骨缺损模型中可观察到术后6周骨缺损即可得到完整修复[65]。Wang等[66]在硫酸钙骨水泥中加入丝素蛋白,增强硫酸钙骨水泥的机械强度与抗稀散性,弥补硫酸钙降解相对较快的不足;同时加入壳聚糖微球,促进生物相容性,加快自身骨组织的生长。复合骨水泥是目前研究的热点和重点,但临床应用时间不长,中远期疗效不确定。"
[1]Dennison E,Mohamed MA,Cooper C.Epidemiology of osteoporosis.Rheum Dis Clin North Am.2006;32(4):617-629.[2]Builjat G,Perovi D.Treatment of osteoporotic fractures of the spine.Arh Hig Rada Toksiko.2007;58(1):49-54.[3]Johnell O,Kanis JA.An estimate of the wordwide prevalence and disability associated with osteoporotic fractures. Osteoporos lnt.2006;17(12):1726-1733.[4]Barr JD,Jensen ME,Hirsch JA,et al.Position statement on percutaneous vertebral augmentation:a consensus statement developed by the Society of Interventional Radiology (SIR), American Association of Neurological Surgeons (AANS) and the Congress of Neurological Surgeons (CNS), American College of Radiology (ACR), American Society of Neuroradiology (ASNR),American Society of Spine Radiology (ASSR),Canadian Interventi-onal Radiology Association (CIRA), and the Society of NeuroInterventional Surgery (SNIS).J Vasc Interv Radiol.2014;25:171-181. [5]Bouza C,López-Cuadrado T,Almendro N,et al.Safety of balloon kyphoplasty in the treatment of osteoporotic vertebral compression fractures in Europe: a meta-analysis of randomized controlled trials.Eur Spine J.2015;24(4):715-723.[6]Esses SI,McGuire R,Jenkins J,et al.The treatment of symptomatic osteoporotic spinal compression fractures.J Am Acad Orthop Surg.2011;19(3):176-182.[7]McConnell CT,Wippold FJ,Ray CE,et al.ACR appropriateness criteria management of vertebral compression fractures.J Am Coll Radiol.2014;11(8):757-763.[8]唐海,陈浩,王炳强,等.椎体后凸成形术治疗重度骨质疏松性椎体压缩骨折[J].中华骨科杂志,2010,30(10):978-983.[9]周毅,海涌,苏庆军,等.椎体后凸成形术治疗骨质疏松椎体压缩性骨折疗效分析[J].中国骨质疏松杂志,2012,18(5):429-433.[10]杨惠林,胡侦明,邱贵兴,等.经皮椎体成形术治疗的相关建议[J]. 中华骨与关节外科杂志,2015,5(5):375-386.[11]贺宝荣,郝定均,杨小彬,等.经皮椎体后凸成形术治疗骨质疏松性胸腰段骨折适应证的选择及并发症的评估[J].脊柱外科杂志, 2012,10(2):67-71.[12]Yang H,Zou J.Filling materials used in kyphoplasty and VertebroplaSty for vertebral compression fracture: a literature review. Artif Cells Blood Substit Immobil Biotechnol. 2011; 39(2):87-91.[13]Walter J,Haciyakupoglu E,Waschke A,et al.Cement leakage as a possible complication of balloon Kyphoplasty is there a difference between osteoporotic compression fracturcs and incomplete burst fractures? Acta Neurochir(wien). 2012; 154(2): 313-319.[14]桂先革,茹选良,蒋增辉,等.经皮椎体后凸成形术治疗骨质疏松性椎体压缩性骨折围于术期并发症分析[J].中国骨伤,2013,26(3) : 205-209.[15]Lee MJ, Dumonski M,Cahill P, et al. Percutaneous treatment of vertebral compression fractures: A meta-analysis of complications. Spine.2009;34(11):1228-1232.[16]Hulme PA,Krebs J,Ferguson SJ, et al. Vertebroplasty and kyphoplasty: a systematicreview of 69 clinical studies. Spine. 2006;31:1983-2001.[17]Phillips FM, Wetzel FT, Lieberman I, et al. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine.2002;27 (19): 2173-2178.[18]Klezl Z,Majeed H,Bommireddy R,et al.Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine.Injury. 2011;42(42):1038-1042.[19]Yu R,Nissen NN,Dhall D,et al.Nesidioblastosis and hyperplasia of alpha cells, microglucag- onoma, and nonfunctioning islet cell tumor of pancreas:review of the literature.Pancreas.2008;36(4):428-431.[20]Dahl OE.Arterial and venous thromhoemholie complications after major orthopaedic surgery.Bone J Surg Br Proceedings. 2006;88(3):6.[21]Piazzolla A,De Giorgi G,Solarino G,et al.Vertebral body recollapse without traum a after kyphoplasty with calcium phosphate cement.Musculoskelet Surg.2011;95(2):141-145.[22]Grafe IA,Baier M,Noldge G,et al.Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kypboplasty of painful osteoporotic vertebral fractures.Spine (Phila Pa 1976).2008;33(11):1284-1290.[23]Rotter R,Pflugmacher R, Kandziora F, et al. Biomechanical in vitro teating of human osteoporotic lumbar vertebrare following prophylactic kyphoplasty with diffierent candidate materials.Spine(Phila Pa 1976).2007;32(13):1400-1405.[24]Turner TM,Urban RM,Singh K,et al.Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.Spine J.2008;8(3):482-487.[25]刘法敬,申勇,丁文元,等.症状性颈椎血管瘤合井脊髓型颈椎病的手术治疗[J].中国修复重建外科杂志,2011,25(1):74-78.[26]Zhu X,Chen X,Chen C,et al.Evaluation of calcium phosphate and calcium sulfate as injectable bone cements in sheep vertebrae.J Spinal Disord Tech.2012;25(6):333-337.[27]苗军,刘春蓉,王继芳,等.复合抗生素对磷酸钙骨水泥理化性质影响作用的研究[J].中国矫形外科杂志,2012,12(3):230-232.[28]Wang X, Ma J, Feng Q,et al.Skeletal repair in rabbits with calcium phosphate cements incorporated phosphorylated chitin.Biomaterials.2012;23(3):4591-4600.[29]Verron E,Pissonnier ML,Lesoeur J,et al.Vertebroplasty using bisphosphonateloaded calcium phosphate cement in a standardized vertebral body bone defect in an osteoporotic sheep model.Acta Biomater.2014;10(11):4887-4895.[30]Libicher M,Vetter M,Wolf I,et al.CT volumetry of intravertebral cement after kypboplasty.Comparison of polymethylmethacrylate and calcium phosphate in a 12-month follow-up.Eur Radiol.2005;15(8):1544-1549.[31]Montazerolghaem M,Rasmusson A,Melhus H,et al. Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption.Mater Sci Mater Med.2016;27(5):83.[32]Lee GS,Park JH,Shin US,et al.Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.Acta Biomater.2011; 7(8):3178-3186.[33]阮孜炜,李东旭. PVA复合磷酸钙骨水泥的制备和性能研究[J].功能材料,2005, 36(7):2601-2605.[34]祝腾蛟,田耘,周方,等.骨质疏松性椎体压缩骨折微创治疗的现状和进展[J].中国微创外科杂志,2015,15(12):1121-1124.[35]Piazzolla A,De Giorgi G,Solarino G.Vertebral body recollapse without trauma after kyphoplasty with calcium phospliate cement.Musculoskelet Surg.2011;95(2):141-145.[36]Ryu KS,Shim,JH,Heo HY,et al.Therapeutic efficacy of injectable calcium phosphate cement in osteoporotic vertebral compression fractures: prospective nonrandomized controlled study at 6-month follow-up.World Neurosurg.2010;73(4): 408-411.[37]Heo HD,Cho YJ,Sheen SH,et al.Morphological changes of injeted calcium phosphate cement in osteoporotic compressed vertebral bodies.Osteoporos Int.2009;20(12): 2063-2070.[38]Hannink G,Wolke JG,Schreurs BW,et al.In vivo behavior of a novel injectable calcium phosphate cement compared with two other commercially available calcium. phosphate cements. J Biomed Mater Res B Appl Biomater.2008;85(2):478-488.[39]Maestretti G,Sutter P,Monnard E,et al.A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures: 10 year results.Eur Spine J.2014;23(6):1354-1360.[40]BlatteTt TR,Jestaedt L,Weckbach A.Suitability of a calcium phosphate cement inosteoporotic vertebral body fracture augmentation: a controlled randomized,clinical trial of halloon Kyphoplasty comparing calcium Phosphate versus polymethylmethacrylate. Spine.2009;34 (2):108 -114.[41]赵金坤,谭红略,王生介,等.硫酸钙骨水泥在骨折椎体成形术中的力学性能[J].实用骨科杂志,2010,16(6):423-426.[42]张军华,张炼.硫酸钙骨水泥强化骨质疏松绵阳腰椎的生物力学研究[J].临床骨科志,2012,15(1):102-105.[43]于晓巍,王楠,刘凤祥,等.硫酸钙骨水泥修复骨质疏松大鼠骨缺损的研究[J].实用骨科杂志,2009,15 (9):678-680.[44]朱爱国,张烽,葛勇,等.硫酸钙骨水泥增强椎弓根螺钉置入骨质疏松椎体的瞬时稳定性[J].中国组织工程研究, 2014,18(26): 4195-4199.[45]Winn SR,Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility of Osteoset,a calcium sulfate bone void filler. Biomaterials.2000;21(23):2413-2425.[46]Palmieri A, Pezzetti F, Brunelli G, et al. Calcium sulfate Acts on the miRNA of MG63E osteoblast-like cells. J Biomed Mater Res B Appl Biomater.2008;84(2): 369-374.[47]Lazary A, Balla B, Kosa JP, et al. Effect of gypsum on proliferation and differentiation of MC3T3-E1 mouse osteo-blastic cells. Biomaterials.2007;28(26) :393-399.[48]Jia WT, Luo SH, Zhang CQ, et al. In vitro and in vivo efficacies of teicoplaninloaded calcium sulfate for treatment of chronic methicillin-resistant staphylococcus aureus osteomyelitis. Antimicrob Agents Chemother.2010;54(1):170-176.[49]Ding H, Zhao CJ, Cui X,et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitisPLoS One.2014;9(1):1-9.[50]黄玉龙,谭磊,张海鹏,等.硫酸钙骨移植替代物作为局部抗生素载体在开放性骨折中的应用[J].中国老年学志, 2015,35(4):977- 978.[51]张军华,张炼.硫酸钙骨水泥强化骨质疏松绵阳腰椎的生物力学研究[J].临床骨科志,2012,15 (1):102-105.[52]白明,银和平.经皮穿刺椎体后凸成形术中骨水泥与硫酸钙应用的对比[J].中国组织工程研究,2011,15(16):2937-2939.[53]Li CD,Gao L, Chen FP, et al.Fabrication of mesoporous calcium silicate /calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting.J Mater Sci.2015;50(22):7182-7191.[54]张树芳,江建明,朱青安,等.胸腰椎压缩性骨折模型中复合骨水泥椎体成形术的生物力学评价[J].南方医科大学学报, 2012,32(6): 843-846. [55]Smirov VV,Antonova OS,Goldberg MA,et al.Bone cements in the calcium phosphate cements sufate system.Chem Technol.2016;467(2):136-139.[56]余雷,刘兴炎,厉孟,等.多孔载因子CPC促进骨缺损愈合的实验研究[J].中国矫形外科杂志.2010,18(8):673-677.[57]扈延龄,李红,李树娟,等.复合rhBMP-2壳聚糖微球可注射磷酸钙骨水泥制备及成骨性能研究[J].中国矫形外科杂志, 2010, 18(20): 1723-1726.[58]厉孟,刘旭东,刘兴炎,等.多孔明胶微球/磷酸钙骨水泥的制备及其性能研究[J].中国矫形外科杂志,2009,17(7):526-529.[59]Weir MD, Xu HH. Osteoblastic induction on calcium phosphate cement chitosan constructs for bone tissue engineering.J Biomed Mater Res A.2010;94A(1):223-233.[60]Zhao L,Tang M,Weir MD,et al.Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold.Tissue Eng Part A.2011;7(8):969-979.[61]Gu Y,Chen L,Yang HL,et al. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein 2 in ovine lumbar interbody fusion.J Biomed Mater Res A.2011;97(2): 177-185.[62]孟丹,谢秋菲.新型壳聚糖微球/磷酸钙骨水泥的动物体内植入研究[J].北京大学学报(医学版),2009,41(1):80-85.[63]Li X, Sogo Y, Ito A, et al.The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo.Mater Sci Eng C Mater Biol Appl. 2009;29(3):969-975.[64]Lee GS, Park JH, Won JE,et al. Alginate combined calcium phosphate cements: mechanical properties and in vitro rat bone marrow stromal cell responses.J Mater Sci Mater Med. 2011;22(5):1257-1268.[65]Lee GS, Park JH, Shin US, et al.Direct deposited porous scaffolds of calcium phosphate cemeal with alginate for drug delivery and bone tissue engineering.Acta Biomater. 2011; 7(8):3178-3186.[66]Wang P,Pi B,Wang JN,et al.Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and sema3A-loaded chitosan microspheres.Front Materi Sci. 2015;9(1): 51-65. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Jiang Huanchang, Zhang Zhaofei, Liang De, Jiang Xiaobing, Yang Xiaodong, Liu Zhixiang. Comparison of advantages between unilateral multidirectional curved and straight vertebroplasty in the treatment of thoracolumbar osteoporotic vertebral compression fracture [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1407-1411. |
[3] | Yu Chengxiang, Liu Lehong, Li Wenbo, Chen Jinshi, Ran Chunlei, Wang Zhongping. Correlation between spine-pelvic sagittal parameters and prognosis of vertebroplasty in the treatment of thoracolumbar osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1412-1417. |
[4] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[5] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[6] | Shen Song, Xu Bin. Diffuse distribution of bone cement in percutaneous vertebroplasty reduces the incidence of refracture of adjacent vertebral bodies [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 499-503. |
[7] | He Yunying, Li Lingjie, Zhang Shuqi, Li Yuzhou, Yang Sheng, Ji Ping. Method of constructing cell spheroids based on agarose and polyacrylic molds [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 553-559. |
[8] | He Guanyu, Xu Baoshan, Du Lilong, Zhang Tongxing, Huo Zhenxin, Shen Li. Biomimetic orientated microchannel annulus fibrosus scaffold constructed by silk fibroin [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 560-566. |
[9] | Chen Xiaoxu, Luo Yaxin, Bi Haoran, Yang Kun. Preparation and application of acellular scaffold in tissue engineering and regenerative medicine [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 591-596. |
[10] | Kang Kunlong, Wang Xintao. Research hotspot of biological scaffold materials promoting osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 597-603. |
[11] | Shen Jiahua, Fu Yong. Application of graphene-based nanomaterials in stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 604-609. |
[12] | Zhang Tong, Cai Jinchi, Yuan Zhifa, Zhao Haiyan, Han Xingwen, Wang Wenji. Hyaluronic acid-based composite hydrogel in cartilage injury caused by osteoarthritis: application and mechanism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 617-625. |
[13] | Li Hui, Chen Lianglong. Application and characteristics of bone graft materials in the treatment of spinal tuberculosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 626-630. |
[14] | Gao Cangjian, Yang Zhen, Liu Shuyun, Li Hao, Fu Liwei, Zhao Tianyuan, Chen Wei, Liao Zhiyao, Li Pinxue, Sui Xiang, Guo Quanyi. Electrospinning for rotator cuff repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 637-642. |
[15] | Ou Liang, Kong Dezhong, Xu Daoqing, Ni Jing, Fu Xingqian, Huang Weichen. Comparative clinical efficacy of polymethyl methacrylate and self-solidifying calcium phosphate cement in vertebroplasty: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 649-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||