Chinese Journal of Tissue Engineering Research ›› 2022, Vol. 26 ›› Issue (4): 649-656.doi: 10.12307/2022.106
Ou Liang1, Kong Dezhong2, Xu Daoqing2, Ni Jing2, Fu Xingqian2, Huang Weichen1
Received:
2020-09-21
Revised:
2020-09-23
Accepted:
2020-10-30
Online:
2022-02-08
Published:
2021-12-06
Contact:
Huang Weichen, Master, Chief physician, Master’s supervisor, Department of Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou Province, China
About author:
Ou Liang, MD, Associate chief physician, Department of Orthopedics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, Guizhou Province, China
Supported by:
CLC Number:
Ou Liang, Kong Dezhong, Xu Daoqing, Ni Jing, Fu Xingqian, Huang Weichen. Comparative clinical efficacy of polymethyl methacrylate and self-solidifying calcium phosphate cement in vertebroplasty: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 649-656.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.4 Meta分析结果 2.4.1 各组疼痛目测类比评分比较 有7篇文献报告了术后目测类比评分[16-17,19-23],PMMA组223例,CPC组222例,各研究间存在明显的异质性(P < 0.1,I2=90%),根据手术方式(PKP或PVP)、术后疼痛评估时间(≤7 d或> 7 d)进行亚组分析后,均未明显降低异质性;再行逐一去除研究的敏感性分析,未发现异质性明显降低,经分析和处理后仍无法获得异质性来源,故采用随机效应模型进行Meta分析,结果显示两组间目测类比评分无显著差异(SMD= -0.45,95%CI: -1.10-0.21,P=0.18)。根据手术方式不同分为2个亚组(PKP与PVP)进行Meta分析,有5篇术式为PKP[17,19,21-23],另外2篇为PVP[16,20],结果表明PMMA和CPC两种不同的填充材料在PKP和PVP术后的疼痛目测类比评分方面也均无显著性差异(SMD= -0.48,95%CI:-1.41-0.46,P=0.32)和(SMD=-0.38,95%CI:-1.56-0.80,P=0.53),见图4。"
2.4.2 各组椎体后凸Cobb角比较 有7项研究报道了术后椎体后凸Cobb角[16-21,24],PMMA组252例,CPC组245例,各研究间不存在异质性(P=0.72,I2=0%),采用固定效应模型进行Meta分析,结果显示术后PMMA组和CPC组在椎体后凸Cobb角恢复方面的差异无显著性意义(MD=-0.16,95%CI:-0.43-0.11,P=0.24)。根据手术方式不同分为2个亚组(PKP与PVP)进行Meta分析,有3篇术式为PKP[17,19,21],另外4篇为PVP[16,18,20,24],结果表明PMMA和CPC两种不同的填充材料分别在PKP和PVP术后椎体后凸Cobb角恢复方面也均无显著性差异(MD=-0.18,95%CI:-1.64-0.29,P=0.46)和(MD=-0.15,95%CI:-0.48-0.17,P=0.35),见图5。 "
[1] WEI P, YAO Q, XU Y, et al. Percutaneous kyphoplasty assisted with/without mixed reality technology in treatment of OVCF with IVC: a prospective study. J Orthop Surg Res. 2019;14(1):255. [2] 李凡杰,杜怡斌,刘艺明,等.椎体成形与弯角椎体成形治疗骨质疏松性椎体压缩骨折:骨水泥注射后分布与渗漏率的比较[J].中国组织工程研究,2020,24(10): 1484-1490. [3] BUCHBINDER R, JOHNSTON RV, RISCHIN KJ, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018; 4(4):CD006349. [4] WANG H, SRIBASTAV SS, Ye F, et al. Comparison of percutaneous vertebroplasty and balloon kyphoplasty for the treatment of single level vertebral compression fractures: a meta-analysis of the literature. Pain Physician. 2015;18(3):209-222. [5] LIU H, LIU B, GAO C, et al. Injectable, biomechanically robust, biodegradable and osseointegrative bone cement for percutaneous kyphoplasty and vertebroplasty. Int Orthop. 2018;42(1): 125-132. [6] LU Q, LIU C, WANG D, et al. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty. Spine J. 2019; 19(11):1871-1884. [7] 刘群,孙东东,高丽兰,等.经皮椎体后凸成形后再发骨折相关因素的Meta分析[J].中国组织工程研究,2020,24(6): 976-984. [8] SUN X, WU Z, HE D, et al. Bioactive injectable polymethylmethacrylate/silicate bioceramic hybrid cements for percutaneous vertebroplasty and kyphoplasty. J Mech Behav Biomed Mater. 2019;96(8):125-135. [9] 葛付涛,赵松,牛丰,等. 磷酸钙骨水泥球囊撑开椎体成形术治疗骨质疏松性椎体骨折[J].中国骨伤,2014,27(2):128-132. [10] 赵东升,殷军,张强,等.经皮椎体成形术自固化磷酸钙人工骨充填治疗骨质疏松性胸腰椎压缩性骨折[J].中华创伤骨科杂志,2006,8(1):20-23. [11] 杨泽雨,阮建伟,郑文标,等.PVP和PKP骨水泥填充材料的研究进展[J].医学综述,2017,23(15):3008-3011,3016. [12] 董国领,贾璞,唐海.可吸收骨水泥在椎体强化术中的应用[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(3):292-297. [13] 孙育良,熊小明,何本祥,等.椎体成形骨填充材料的研究与现状[J].中国组织工程研究,2017,21(14):2285-2290. [14] HIGGINS JP, ALTMAN DG, GOTZSCHE PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. [15] STANG A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9): 603-605. [16] 余智,韩森东.PVP充填自固化磷酸钙骨水泥对老年疼痛性骨质疏松性胸腰椎骨折疼痛及生活质量的影响[J].临床外科杂志,2019,27(3):243-246. [17] 王雪峰,尚希福.三种填充材料修复胸腰椎骨质疏松性骨折的疗效对比[J].中国组织工程研究,2019,23(6):863-869. [18] 徐爱敬,樊安未,李海冰. 2种材料治疗胸腰椎骨质疏松性骨折的疗效对比研究[J].检验医学与临床,2018,15(4):561-563. [19] 贾小林,谭祖键,杨阜滨,等.磷酸钙骨水泥与传统骨水泥后凸成形术治疗骨质疏松性椎体骨折的比较[J].中国骨与关节杂志,2016,5(5):391-394. [20] 张福恒,陈德喜,郎继孝,等.聚甲基丙烯酸甲酯与磷酸钙骨水泥在骨质疏松性胸腰椎压缩骨折中的临床疗效分析[J].中国骨与关节损伤杂志,2015,30(1):21-23. [21] 程兴东,孙强,刘忠厚,等.充填材料对经皮椎体后凸成形术疗效影响的观察[J].中国骨质疏松杂志,2012,18(2):157-161. [22] BLATTERT TR, JESTAEDT L, WECKBACH A. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine (Phila Pa 1976). 2009;34(2):108-114. [23] GRAFE I A, BAIER M, NOLDGE G, et al. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine (Phila Pa 1976). 2008;33(11):1284-1290. [24] 陈远武,易伟宏,王锡三,等.不同充填材料强化椎体在骨质疏松性椎体压缩骨折中的应用[J].脊柱外科杂志,2006,4(2): 65-68. [25] ANDERSON PA, FROYSHTETER AB, TONTZ WJ. Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J Bone Miner Res. 2013;28(2):372-382. [26] BUCHBINDER R, OSBORNE RH, EBELING PR, et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med. 2009;361(6):557-568. [27] KALLMEA DF, COMSTOCK BA, GRAY LA, et al. Baseline pain and disability in the Investigational Vertebroplasty Efficacy and Safety Trial. AJNR Am J Neuroradiol. 2009;30(6):1203-1205. [28] BELKOFF SM, MATHIS JM, JASPER LE, et al. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine (Phila Pa 1976). 2001; 26(14):1537-1541. [29] BOGER A, BOHNER M, HEINI P, et al. Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res B Appl Biomater. 2008;86(2):474-482. [30] PALMER I, NELSON J, SCHATTON W, et al. Biocompatibility of calcium phosphate bone cement with optimized mechanical properties. J Biomed Mater Res B Appl Biomater. 2016;104(2):308-315. [31] 董国领,贾璞,唐海.可吸收骨水泥在椎体强化术中的应用[J].中华骨质疏松和骨矿盐疾病杂志,2019,12(3):292-297. [32] 邓轩赓,熊小明,崔伟,等. CPC/PMMA复合骨水泥在老年椎体后凸成形术中的初步应用研究[J].中国骨伤,2020,33(9): 831-836. [33] HEO HD, CHO YJ, SHEEN SH, et al. Morphological changes of injected calcium phosphate cement in osteoporotic compressed vertebral bodies. Osteoporos Int. 2009;20(12):2063-2070. [34] YANG H, ZOU J. Filling materials used in kyphoplasty and vertebroplasty for vertebral compression fracture: a literature review. Artif Cells Blood Substit Immobil Biotechnol. 2011;39(2):87-91. [35] KLEIN R, TETZLAFF R, WEISS C, et al. Osteointegration and resorption of intravertebral and extravertebral calcium phosphate cement. Clin Spine Surg. 2017; 30(3):E291-E296. [36] BERLEMANN U, FERGUSON SJ, NOLTE LP, et al. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br. 2002; 84(5):748-752. [37] BOGER A, HEINI P, WINDOLF M, et al. Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Eur Spine J. 2007;16(12):2118-2125. [38] NOUDA S, TOMITA S, KIN A, et al. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine. Spine (Phila Pa 1976). 2009;34(24):2613-2618. |
[1] | Xu Xinzhong, Wu Zhonghan, Yu Shuisheng, Zhao Yao, Xu Chungui, Zhang Xin, Zheng Meige, Jing Juehua. Biomechanical analysis of different ways of inserting Steinmann Pins into the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1313-1317. |
[2] | Li Rui, Shi Wen, Yang Shicai, Lü Linwei, Zhang Chunqiu. Effect of splintage and Shenxiaosan cataplasm on fracture healing in rabbits with radial fracture model [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1329-1333. |
[3] | Yuan Jiabin, Zhu Zongdong, Tang Xiaoming, Wei Dan, Tan Bo, Xiao Chengwei, Zhao Ganlinwei, Liao Feng. Classification and reduction strategies for irreducible intertrochanteric femoral fracture based on anatomy [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1341-1345. |
[4] | Liu Feng, Feng Yi. Finite element analysis of different Kirschner wire tension bands on transverse patella fractures during gait cycle [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1367-1371. |
[5] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[6] | Jiang Huanchang, Zhang Zhaofei, Liang De, Jiang Xiaobing, Yang Xiaodong, Liu Zhixiang. Comparison of advantages between unilateral multidirectional curved and straight vertebroplasty in the treatment of thoracolumbar osteoporotic vertebral compression fracture [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1407-1411. |
[7] | Yu Chengxiang, Liu Lehong, Li Wenbo, Chen Jinshi, Ran Chunlei, Wang Zhongping. Correlation between spine-pelvic sagittal parameters and prognosis of vertebroplasty in the treatment of thoracolumbar osteoporotic vertebral compression fractures [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1412-1417. |
[8] | Xue Yadong, Zhou Xinshe, Pei Lijia, Meng Fanyu, Li Jian, Wang Jinzi . Reconstruction of Paprosky III type acetabular defect by autogenous iliac bone block combined with titanium plate: providing a strong initial fixation for the prosthesis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1424-1428. |
[9] | Zhuang Zhikun, Wu Rongkai, Lin Hanghui, Gong Zhibing, Zhang Qianjin, Wei Qiushi, Zhang Qingwen, Wu Zhaoke. Application of stable and enhanced lined hip joint system in total hip arthroplasty in elderly patients with femoral neck fractures complicated with hemiplegia [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1429-1433. |
[10] | Li Canhui, Wu Zhengjie, Zeng Yanhui, He Yinghao, Situ Xiaopeng, Du Xuelian, Hong Shi, He Jiaxiong. Advantage and disadvantage of robot-assisted sacroiliac screw placement and traditional fluoroscopy in orthopedic surgery [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1434-1438. |
[11] | Zhu Chan, Han Xuke, Yao Chengjiao, Zhou Qian, Zhang Qiang, Chen Qiu. Human salivary components and osteoporosis/osteopenia [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1439-1444. |
[12] | Li Wei, Zhu Hanmin, Wang Xin, Gao Xue, Cui Jing, Liu Yuxin, Huang Shuming. Effect of Zuogui Wan on bone morphogenetic protein 2 signaling pathway in ovariectomized osteoporosis mice [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1173-1179. |
[13] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[14] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[15] | Wu Bingshuang, Wang Zhi, Tang Yi, Tang Xiaoyu, Li Qi. Anterior cruciate ligament reconstruction: from enthesis to tendon-to-bone healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1293-1298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||