Chinese Journal of Tissue Engineering Research ›› 2015, Vol. 19 ›› Issue (12): 1938-1942.doi: 10.3969/j.issn.2095-4344.2015.12.025
Previous Articles Next Articles
Zhou Xiao, Qian Yu-fen
Revised:
2015-01-29
Online:
2015-03-19
Published:
2015-03-19
Contact:
Qian Yu-fen, Chief physician, Professor, Shanghai Key Laboratory of Stomatology, Department of Orthodontics, the Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
About author:
Zhou Xiao, Studying for master’s degree, Shanghai Key Laboratory of Stomatology, Department of Orthodontics, the Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
Supported by:
the National Natural Science Foundation of China, No. 81170989
CLC Number:
Zhou Xiao, Qian Yu-fen. Stability of tissue engineering bone in the repair of bone defects: material degradation and bone formation[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(12): 1938-1942.
2.1 有机材料 目前用于组织工程骨支架的有机材料主要有聚乳酸、乙醇酸,两者的共聚物聚乳酸-乙醇酸共聚物及聚己内酯,其降解机制为化学降解和生物降解两类,无论在体内还是体外降解速率的差别并不大,并且都是以化学降解为主,降解速率主要由材料的化学键类型、环境pH值、聚合物的结构及吸水性能决定[7-9]。聚乳酸和聚己内酯的降解速度较慢,聚乳酸完全降解所需要的时间一般大于1年,聚己内酯则要大于2年[10-12]。乙醇酸降解比较快,完全降解的时间一般需要6个月到1年[11,13-14]。聚乳酸-乙醇酸共聚物是降解率可调节性材料,根据孔径大小和孔隙率的不同及聚乳酸、乙醇酸的比例不同降解率亦不同,完全降解时间范围较宽,一般为1个月到1年[15]。Pan等[9]研究表明,聚乳酸-乙醇酸共聚物降解时,分子质量最先下降,并与时间长短成指数关系,一般三四周分子质量已减少一半,然而其质量与体积在14周之前几乎不发生变化,到16周之后才会出现明显下降,并与时间长短呈线性关系。孔径大小及孔隙率是影响聚乳酸-乙醇酸共聚物降解率的主要因素,但既往的研究结果尚存在争议[16-18],值得提出的是,Pan等[9]对此做了非常细致的研究,其发现孔隙率越大孔径越小降解越慢,孔隙率越小孔径越大降解越快,孔隙率为95%、孔径大小为50-90 μm材料的分子质量下降1/2需要四五周,质量下降1/2需要25-28周;孔隙率为80%、孔径大小为280-450 μm材料的分子质量下降1/2需要三四周,质量下降1/2需要10-17周。这些研究结果为选择合适孔径大小及孔隙率的材料提供了依据。 在以动物模型为基础的体内实验中,根据骨缺损部位、大小、形状的不同,选择合适的有机材料支架,骨缺损基本得到了良好修复[6,19-21]。对于比较早期应用的聚乳酸来说,即使存在最大的机械力使其降解,在先前的3个月只有25%的力量丧失,而要1年时间机械力才能全部消失,并且由于材料的疏水性及结晶性能,完全降解需要四五年的时间。如此缓慢的降解速度,就如同无法降解的材料一样,导致应力遮挡及对生长的限制。另一方面,对于乙醇酸来说降解速度又太快,这将会导致降解材料的堆积,对于缺损区也起到了不良作用。所以,作为一个理所当然的结果,将此两种材料适当加以混合,作用于修复骨缺损,可对吸收时间加以控制,使之不会太长久,也能够提供足够的时间使骨修复,并且引起的排异反应也有所减小。在Park等[19]的研究中,以聚乳酸-乙醇酸共聚物为材料修复兔下颌骨缺损,分别在术后第4,6,8,10周观察新骨生成情况,结果显示在第4周时聚乳酸-乙醇酸共聚物有吸收,组织学观察有结缔组织生成,包绕材料,未见有新骨生成;在第6周后部分标本有新骨生成;在第8-10周所有标本显示有大量新骨生成,缺损得到了良好修复。在Park等[6]的研究中,分别用聚乳酸-乙醇酸共聚物、聚己内酯3D框架材料修复兔胫骨长15 mm大面积骨缺损,在术后第4,8,12周观察材料吸收和新骨生成情况,结果显示在第4周两种材料都有新骨生成,聚乳酸-乙醇酸共聚物已有较明显吸收,框架结构不明显,而聚己内酯基本没吸收,框架结构十分明显,新骨在其框架间隙内生成;在第8周两组新骨继续生成,聚乳酸-乙醇酸共聚物组生成新骨密度不均,聚乳酸-乙醇酸共聚物继续明显吸收,聚己内酯组材料基本无吸收,框架结构明显,新骨继续在其框架间隙内生成,新骨密度高于聚乳酸-乙醇酸共聚物组;在第12周聚乳酸-乙醇酸共聚物组材料完全吸收,新骨基本充满整个缺损,虽能较好修复骨缺损,但骨密度不均,比较稀疏,骨厚度亦不足,聚己内酯组框架仍十分明显,引导新骨在其框架间隙内生成,骨密度致密。结果表明聚己内酯降解慢,其3D框架材料适合修复大面积骨缺损;聚乳酸-乙醇酸共聚物降解相对快,更适合修复小面积骨缺损,而修复大面积骨缺损效果不如聚己内酯3D框架材料。据此推测,临床上以聚己内酯3D框架材料为支架的组织工程骨有可能较好地修复骨缺损面积较大的牙槽突裂,实际效果有待基础和临床实验证实。 2.2 无机材料 因生物降解陶瓷在体内能完全吸收,所形成的新骨塑形不受材料影响,因而被广泛应用,成为骨组织工程支架材料的研究重点。其主要有磷酸钙陶瓷和硫酸钙陶瓷两类,而应用最多的是磷酸钙陶瓷,主要包括羟基磷灰石、β-磷酸三钙、硫酸钙陶瓷(主要为α-半水硫酸钙)。无机材料在体内降解主要有两个途径:一是体液介导的溶解,是在体液的作用下将材料水解;二是细胞介导的降解,对于降解快速的材料,主要通过巨噬细胞和巨细胞参与吞噬降解,而对于降解缓慢的材料,破骨细胞起到主导作用。在材料刚植入的阶段,主要是通过巨噬细胞介导的降解,而在透钙磷石完全转化为碳磷灰石之后破骨细胞起主要作用[22]。 羟基磷灰石与骨的矿物成分一样,并且有杰出的骨引导性,是良好的组织工程骨支架材料,被广泛用于修复骨缺损[23-24],但因其在体内几乎无法溶解,影响新骨的形成,故应用受到一定局限。临床上牙槽突裂患者植骨后,一般需将邻牙移入到植骨区,这就需要植入材料有较好的吸收,新骨能充分形成,故单纯的羟基磷灰石不适合作为支架材料修复牙槽突裂。Tanimoto和Yoshioka团队最近的研究提示碳化羟基磷灰石在体内能良好的吸收,引导新骨形成,是修复牙槽突裂良好的支架材料[24-26]。其以比格犬上颌人造牙槽突裂为模型,分别以碳化羟基磷灰石加骨髓干细胞的组织工程骨及碳化羟基磷灰石修复骨缺损,结果表明组织工程骨组在术后3个月材料吸收约40%,新骨形成约占骨缺损体积的40%,术后6个月材料吸收约65%,新骨形成约在骨缺损体积的75%;碳化羟基磷灰石组术后3个月材料吸收约30%,新骨形成约占骨缺损体积的25%,术后6个月材料吸收约50%,新骨形成约在骨缺损体积的35%;说明碳化羟基磷灰石组材料吸收和新骨形成都慢于组织工程骨组。 β-磷酸三钙在体内降解表现为先快后慢。Wiltfang等[27]的研究中,以β-磷酸三钙修复小型猪胫骨3.5-4.7 mL骨缺损,结果显示术后4,16,20,28,68及86周材料分别吸收了5%、60%、70%、80%、90%-95%及97%以上。故在20周之前其吸收较快,20周之后吸收趋于缓慢,完全吸收需要约2年。Yuan等[28]对修复大面积骨缺损做了深入研究,其研究分别用β-磷酸三钙加骨髓干细胞的组织工程骨、β-磷酸三钙及自体骨修复犬下颌骨长30 mm的整段骨缺损,结果显示,在术后12周时材料吸收了约60%,组织工程骨组新骨形成活跃,骨缺损处大面积高密度影,而单纯β-磷酸三钙组新骨形成非常少量,只见残留材料的颗粒状高密度影;术后32周苏木精-伊红染色观察,仍有少量β-磷酸三钙剩余,组织工程骨组骨缺损得到良好修复,效果同自体骨修复组,而单纯β-磷酸三钙组缺损处只见纤维组织修复。对于大面积骨缺损,β-磷酸三钙前期吸收较快,而新骨成形较慢,单纯β-磷酸三钙修复效果不佳;β-磷酸三钙加骨髓干细胞的组织工程骨能使新骨更好更快的形成,故修复效果较理想。最近,Lee团队以大鼠颅骨8 mm缺损为骨缺损模型,对β-磷酸三钙加羟基磷灰石复合材料(80%/20%)及单纯β-磷酸三钙等材料做了细致的研究与比较,结果显示,单纯β-磷酸三钙骨修复效果优于β-磷酸三钙加羟基磷灰石复合材料(80%/20%),并且单纯β-磷酸三钙为重组人骨形态发生蛋白的良好载体[29]。 α-半水硫酸钙降解速度较快,完全降解一般为4-10周,故单纯α-半水硫酸钙的应用受到一定局限[30]。目前,α-半水硫酸钙复合材料为研究热点。最近,Mao等[31]研究表明α-半水硫酸钙和β-磷酸三钙复合材料(质量比3∶7)的降解速率与新骨形成速率能很好匹配,术后8周绝大部分材料已吸收,新骨形成良好,术后12周新骨基本充满整个术区。α-半水硫酸钙和β-磷酸三钙复合材料的降解速度介于α-半水硫酸钙和β-磷酸三钙之间,对于非大面积骨缺损是较理想的支架材料。α-半水硫酸钙的降解速率较快,并且有足够的强度和自凝能力;β-磷酸三钙的降解速度与新骨生成速度相当,但机械性能较薄弱,并且没有自凝能力。通过对这两种材料不同比例的的混合,可调整混合材料的固化、强度、降解速度等方面的性能。尽管β-磷酸三钙与骨的矿物结构相近,并且能在体内塑造良好形态、保持适当硬度,但仍然有不足之处,例如脆性较大、孔隙率不足等。在Mao的研究中,使用α-半水硫酸钙和β-磷酸三钙复合材料一组的材料降解速度与新骨形成速度相当,新骨矿化速率也与自体骨组相当,但其中不排除自体骨填充不足量等因素。 2.3 有机无机复合材料 复合材料是最近骨组织工程的研究热门,研究人员对开发新的支架材料做了许多尝试与研究,其中包括纳米β-磷酸三钙和聚乳酸的复合材料、胶原与羟基磷灰石复合的材料及混旋聚乳酸与纳米羟基磷灰石复合材料。 Cao等[32]对纳米β-磷酸三钙和聚乳酸复合材料做了细致的研究,实验中根据纳米β-磷酸三钙所含质量百分比不同分为单纯聚乳酸、10%纳米β-磷酸三钙、30%纳米β-磷酸三钙、50%纳米β-磷酸三钙组。材料降解体外测试显示,5周后,50%纳米β-磷酸三钙组质量下降快于其他组;第28周,50%纳米β-磷酸三钙组质量减少约13%,30%纳米β-磷酸三钙组减少9%,10%纳米β-磷酸三钙组减少7%,单纯聚乳酸减少6%。体内实验新骨形成情况显示,第8周,30%和50%纳米β-磷酸三钙组形成新骨占体积约32%,明显好于10%纳米β-磷酸三钙组的21%和单纯聚乳酸组的9%。另外,复合材料中β-磷酸三钙比例越大材料脆性越大,聚乳酸减少了β-磷酸三钙的脆性,使其更好地应用于承重区的骨修复;同时,β-磷酸三钙的加入中和了聚乳酸产生的酸性,使新骨更好地形成;实验中还发现材料的孔隙率为70%、孔径大小为100-500 μm为最佳。 Vozzi等[33]对进行了比较详细的体外研究,将成骨细胞移植入羟基磷灰石与胶原的复合材料(分别含有10%,20%,30%羟基磷灰石的3组)。但是经过7 d和21 d两个时间点的观察后,10%组成骨细胞繁殖率要明显高于20%组和30%组,这表明成骨细胞在起初的一段生长时间(1-30 d),机械性能(与羟基磷灰石的含量相关)会影响繁殖速率,相对于比较坚硬的组分(羟基磷灰石),细胞更倾向于松软的组分(胶原)。对于这一现象的合理解释,是由于羟基磷灰石的含量多少影响了材料的孔隙率,这是决定细胞移植的一个重要因素。高孔隙率可以满足细胞的渗透及庞大的运输需要。研究亦映照了前人研究的观点,即成骨细胞的生存和繁殖能力不仅取决于材料的内在性能,而且也受到材料自身机械性能和形态的影响。 Chen等[34]对混旋聚乳酸与纳米羟基磷灰石复合材料的体外实验中,将含有不同质量的纳米纳米羟基磷灰石复合材料分成4组(0%、20%、40%、60%),浸泡于SBF溶液中,该溶液可以根据材料表面形成的磷灰石而被评估。实验结果显示,4组实验材料在浸泡于SBF后质量都随时间增长而下降,并且在实验28 d后,0%纳米羟基磷灰石组材料剩余质量最小。然而在实验的前7 d中,支架材料含有纳米羟基磷灰石越多降解速率也就越快。处于SBF中的4组支架材料在28 d中,0%组丢失4.4%的质量,20%组丢失1.9%的质量,40%组丢失2.2%的质量,60%组丢失4.2%的质量,所以纳米羟基磷灰石含量越大质量减少越多。然而0%组和60%组的数据差别不明显,且20%和40%组的数据差别也不大。纳米羟基磷灰石的亲水性可促进材料的水解,因而60%组的降解速率在前7 d中最快。然而在7 d后,0%组支架材料的降解质量要多于20%组和40%组,这其中原因是20%组和40%组的支架材料表面有较多磷灰石沉积。纳米羟基磷灰石含量越多磷灰石的沉积也就越多,所以0%组的质量会下降最多。与不含纳米羟基磷灰石的混旋聚乳酸支架材料相比,含有纳米羟基磷灰石的支架材料会降低降解速率和材料质量丢失的速度,但并不会影响材料的作用速度。故而纳米羟基磷灰石的应用可以控制混旋聚乳酸/纳米羟基磷灰石支架材料的降解速率。"
[1] Paradowska-Stolarz A,Dubowik M,et al.Dental anomalies in the incisor-canine region in patients with cleft lip and palate - literature review. Dev Period Med. 2014;18(1):66-69. [2] 黄迪炎,陈海龙.先天性唇腭裂治疗现状[J].实用医药杂志,2003, 20(1):68-70. [3] 毛萌,朱军.出生缺陷监测研究现状[J].实用儿科临床杂志,2009, 24(11):801-803. [4] Cho-Lee GY, García-Díez EM, Nunes RA,et al.Review of secondary alveolar cleft repair.Ann Maxillofac Surg.2013;3(1): 46-50. [5] Gimbel M,Ashley RK,Sisodia M,et al.Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J CraniofacSurg. 2007;18(4):895-901. [6] Park SH, Park DS, Shin JW, et al.Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA.J Mater Sci Mater Med.2012;23(11):2671-2678. [7] Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103-114. [8] Grayson AC,Voskerician G,Lynn A,et al. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid)homo- and co-polymers for a polymeric drug-delivery microchip.J Biomater Sci Polym Ed. 2004;15(10):1281-1304. [9] Pan Z,Ding JD.Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine.Interface Focus. 2012;2(3):366-377. [10] Middleton JC,Tipton AJ.Synthetic biodegradable polymers as orthopaedic devices. Biomaterials.2000;21:2335-2346. [11] Yang S,Leong KF,Du Z,et al.The design of scaffolds for use in tissue engineering. Part I. Traditional factors.Tissue Eng. 2001; 7:679-689. [12] Iroh JO. Poly(epsilon-caprolactone). In: Mark JE, editor. Polymer data handbook. Oxford: Oxford Press; 1999:361-362. [13] Mark JE. Polymerdata handbook. Oxford: Oxford Press,1999: 527-633. [14] Ramakrishna S,Huang ZM,Kumar GV,et al. An introduction to biocomposites. London: Imperial College Press,2004:36. [15] Seal BL,Otero TC,Panitch A.Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep.2001;34: 147-230. [16] Athanasiou KA,Schmitz JP,Agrawal CM.The effects of porosity on in vitro degradation of polylactic acid polyglycolic acid implants used in repair of articular cartilage.Tissue Eng. 1998;4:53-63. [17] Agrawal CM,McKinney JS,Lanctot D,et al.Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials.2000;21:2443-2452. [18] Lu L,Peter SJ,Lyman MD,et al.In vitro and in vivo degradation of porous poly(D,L-lactic-co-glycolic acid) foams. Biomaterials. 2000;21:1837-1845. [19] Park S,Kim JH,Kim IH,et al.Evaluation of Poly (lactic-co-glycolic Acid) Plate and Screw System for Bone Fixation.J Craniofac Surg.2013;24(3):1021-1025. [20] Patrascu JM,Krüger JP,Böss HG,et al.Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model.J Biomed Mater Res B Appl Biomater.2013;101(7):1310-1320. [21] Tanaka T,Hirose M,Kotobuki N,et al.Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds.J Biomed Mater Res A.2009; 91(2):428-435. [22] Theiss F,Apelt D,Brand B,et al.Biocompatibility and resorption of a brushite calcium phosphate cement.Biomaterials.2005; 26(21): 4383-4394. [23] Matsuo A,Yamazaki Y,Takase C,et al.Osteogenic potential of cryopreserved human bone marrow–derived mesenchymal stem cells cultured with autologous serum. J Craniofac Surg. 2008;19:693-700. [24] Shimakura Y,Yamzaki Y,Uchinuma E,et al.Experimental study on bone formation potential of cryopreserved human bone marrow mesenchymal cell/hydroxyapatite complex in the presence of recombinant human bone morphogenetic protein-2. J Craniofac Surg.2003;14:108-116. [25] Yoshioka M,Tanimoto K,Tanne Y,et al.Bone regeneration in artificial jaw cleft by use of carbonated hydroxyapatite particles and mesenchymal stem cells derived from iliac bone. Int J Dent.2012;2012:352510. [26] Tanimoto K,Sumi K,Yoshioka M,et al.Experimental Tooth Movement Into New Bone Area Regenerated by Use of Bone Marrow-Derived Mesenchymal Stem Cells.Cleft Palate Craniofac J. 2013.[Epub ahead of print] [27] Wiltfang J,Merten HA,Schlegel KA,et al.Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs.J Biomed Mater Res.2002;63(2):115-121. [28] Yuan J,Cui L,Zhang WJ,et al.Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials. 2007;28(6): 1005-1013. [29] Lee JH, Ryu MY, Baek HR,et al.Effects of porous beta-tricalcium phosphate-based ceramics used as an E. coli-derived rhBMP-2 carrier for bone regeneration. J Mater Sci Mater Med.2013;24(9): 2117-2127. [30] Thomas MV,Puleo DA,Al-Sabbagh M.Calcium sulfate: a review. J Long Term Eff Med Implants 2005;15(6):599-607. [31] Mao K,Cui F, Li J,et al.Preparation of combined β-TCP/α-CSH artificial bone graft and its performance in a spinal fusion model. J Biomater Appl.2012;27(1):37-45. [32] Cao L, Duan PG, Wang HR,et al.Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold.Int J Nanomedicine. 2012;7:5881-5888. [33] Vozzi G,Corallo C,Carta S,et al.Collagen-gelatin-genipin- hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: In vitro evidences. J Biomed Mater Res A.2014; 102(5):1415-1421. [34] Chen L,Tang CY,Tsui CP,et al. Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-d-l-lactide/nano-hydroxyapatite composite scaffolds. J Mech Behav Biomed Mater.2013;22: 41-50. [35] Mouriño V,Cattalini JP,Roether JA,et al.Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv. 2013;10(10): 1353-1365. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Zeng Xianghong, Liang Bowei. A new strategy for the treatment of osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 431-437. |
[12] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[13] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[14] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[15] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||