Chinese Journal of Tissue Engineering Research ›› 2015, Vol. 19 ›› Issue (12): 1931-1937.doi: 10.3969/j.issn.2095-4344.2015.12.024
Previous Articles Next Articles
Li Qi, Li Jian
Revised:
2015-02-17
Online:
2015-03-19
Published:
2015-03-19
Contact:
Li Jian, Master, Professor, Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
About author:
Li Qi, M.D., Attending physician, Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
Supported by:
the National Natural Science Foundation of China, No. 81101393
CLC Number:
Li Qi, Li Jian. Basic fibroblast growth factor and fibrin glue in orthopedics[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(12): 1931-1937.
2.1 纳入资料基本概况 纳入的文献主要是碱性成纤维细胞生长因子以及纤维蛋白胶在骨科基础研究中的运用,主要为促进骨、肌腱、肌腱-骨愈合以及在体外组织工程中的研究等,具体包括碱性成纤维细胞生长因子促进成骨32篇[1-32]、促进韧带愈合4篇[33-36]、促进腱骨愈合3篇[37-39]、在构建组织工程中的运用6篇[40-45],以及其缓释载体的研究2篇[46-47];对于纤维蛋白胶的研究包括了其缓释材料载体研究4篇[48-51]、作为生长因子缓释载体的研究7篇[46-53],及其在细胞支架研究中的运用11篇[54-64]。 文章以此为依据对碱性成纤维细胞生长因子及纤维蛋白胶在骨科领域的运用研究进展进行综述。 2.2 纳入资料的研究结果特征 2.2.1 碱性成纤维细胞生长因子 碱性成纤维细胞生长因子是含154个氨基酸的促有丝分裂阳离子多肽,相对分子质量为16 000-18 500。 碱性成纤维细胞生长因子主要通过与中胚层和神经外胚层起源的骨骼肌细胞、成纤维细胞和骨细胞等细胞上受体结合发挥其促进细胞分裂的作用。其主要生物学作用有:①促进新生血管生成。②促进创伤愈合与组织修复。③促进纤维结缔组织再生。④参与神经细胞再生等。 相关研究表明,碱性成纤维细胞生长因子对体内成骨、韧带损伤愈合及腱骨愈合等具有一定的促进作用。 促进成骨:研究表明碱性成纤维细胞生长因子具有明显促进体内成骨的作用。成骨细胞在受到应力刺激下,通过PKA和MAPK信号传导通路,首先上调碱性成纤维细胞生长因子表达,并在短时间(30 min)后上调其受体表达,表明碱性成纤维细胞生长因子是骨组织修复细胞增殖反应所必需的[1]。 全身运用碱性成纤维细胞生长因子能促进骨量增加,骨小梁形态改善[2-3]。多种复合碱性成纤维细胞生长因子的材料在骨折处局部运用既能诱导膜内成骨,也能诱导软骨内成骨,增加皮质骨厚度、骨小梁的数量及连续性[4-6],尽管文献所报道使用的碱性成纤维细胞生长因子方法和剂量相差较大(5-400 μg)。 促进骨折愈合:Nakamura等[7]通过局部运用不同剂量(4-1 600 μg)的碱性成纤维细胞生长因子对骨折愈合的影响后发现,需要相对较高的剂量(> 400 μg)诱导新骨生成。 Kawaguchi等[8]运用碱性成纤维细胞生长因子促进骨折愈合,结果发现骨折后6周碱性成纤维细胞生长因子组骨折均愈合,而对照组有4只(4/10)动物术后10周骨折仍未愈合。Chen等[9]研究发现,在动物胫骨骨折断端直接加载碱性成纤维细胞生长因子对骨折愈合有明显促进作用。 修复骨缺损:Tabata等[10]采用复合100 μg 碱性成纤维细胞生长因子的水凝胶聚合物修复颅骨缺损,取得了较好的效果。Schnettler等[11]采用复合50 μg 碱性成纤维细胞生长因子的羟基磷灰石修复骨缺损,结果发现其在新生血管生成、新骨长入以及骨愈合方面与自体骨移植相比均无明显差异。 Mabilleau等[12]研究发现,复合45 μg碱性成纤维细胞生长因子的圆柱形水凝胶聚合物(直径4 mm,高6 mm)具有碱性成纤维细胞生长因子缓释效果,用其修复兔胫骨近端骨缺损,术后3个月能显著增加骨缺损周围骨量、骨小梁数量及连续性。 促进牵张成骨:Abbaspour等[13]采用了兔胫骨骨折后牵张成骨的模型,通过皮下微泵对骨折局部持续给予碱性成纤维细胞生长因子14.28 μg/60 μL/day(预实验: 7.14 μg/60 μL/d,14.28 μg/60 μL/d and 35.71 μg/ 60 μL/d)。术后4-8周的骨密度测定结果显示术后6,8周,碱性成纤维细胞生长因子组的骨密度明显高于对照组;术后8周组织学切片显示碱性成纤维细胞生长因子组的板层骨的厚度明显高于对照组;术后8周生物力学测试显示碱性成纤维细胞生长因子组3点弯曲载荷明显高于对照组。此外,碱性成纤维细胞生长因子基因转染的骨髓间充质干细胞也能有效促进牵张成骨。 Jiang等[14]采用兔下颌骨牵张成骨模型,将转染了碱性成纤维细胞生长因子基因的骨髓间充质干细胞注入骨折处,8周后发现碱性成纤维细胞生长因子基因转染组的组织学、骨小梁形态、骨密度及生物力学强度均优于空白对照组及单纯骨髓间充质干细胞组。 促进假体周围成骨:Gao等[6]在大鼠胫骨髓腔内钛合金假体(直径1 mm,长度10 mm)周围局部联合使用碱性成纤维细胞生长因子和唑来膦酸。术后3个月后发现,上述处理能显著提高假体周围骨量、骨小梁数量及连续性,同时提高假体的抗推出力。与其他一些研究相同[15-17],他们用于浸泡假体的碱性成纤维细胞生长因子浓度为20 mg/L。 另一项研究中,Gao等[18]发现5 μg 碱性成纤维细胞生长因子结合20 μL生物凝胶(Matrigel)能使碱性成纤维细胞生长因子局部缓释超过1周。在大鼠胫骨髓腔内钛合金假体周围使用这种含有碱性成纤维细胞生长因子的凝胶,术后3个月能提高假体周围骨量2倍,增加假体抗推出力4倍。 碱性成纤维细胞生长因子促进成骨的作用机制主要有: ①促进骨髓间充质干细胞增殖,并分化为成骨细胞[19-22]。Canalis等[23]还发现碱性成纤维细胞生长因子在体内能诱导转化生长因子β基因表达上调,从而增加转化生长因子β及骨形态发生蛋白含量,诱导成骨细胞系的增殖与分化。②促进成骨细胞增殖[1,24],上调骨桥素表达。Terashima等[25]通过成纤维细胞体外培养,发现碱性成纤维细胞生长因子能上调牙周组织成纤维细胞的骨桥素表达,但同时抑制其他成骨蛋白的基因表达。③上调血管内皮生长因子的表达,并与血管内皮生长因子协同作用,促进血管内皮细胞增殖、新生血管生成[26-28]。 碱性成纤维细胞生长因子促进成骨需要体内其他因素协同作用:体外培养结果显示,持续或高剂量的碱性成纤维细胞生长因子刺激,可抑制成骨蛋白基因表达,同时抑制Ⅰ型胶原、基质金属蛋白酶1合成、成骨细胞碱性磷酸酶产生及钙化[25,29-32]。这一表现与碱性成纤维细胞生长因子体内实验促进成骨的现象矛盾,其可能的原因为:碱性成纤维细胞生长因子为组织损伤愈合的启动因素之一,能促细胞增殖、激活其他因子活性,最终在包括机械应力、其他生长因子等多种因素协同作用下完成组织修复,而体外培养仅为单一因素作用,无法完全模拟这一过程。 促进韧带损伤愈合:Chan等[33-34]通过大鼠髌韧带损伤后愈合模型的研究发现,外源性碱性成纤维细胞生长因子通过促进成纤维细胞增殖及Ⅲ型胶原表达,促进大鼠髌韧带损伤后愈合。同时发现,1 000 ng 碱性成纤维细胞生长因子组术后7 d的成纤维细胞增殖及Ⅲ型胶原表达最好(0,10,100,1 000 ng相比较)。 Fukui等[35]发现碱性成纤维细胞生长因子能增加兔内侧副韧带损伤早期肉芽组织形成,但却降低其中I型胶原的含量。尤其是较高剂量的碱性成纤维细胞生长因子反而对后期修复过程有抑制,延迟修复组织的成熟。 Kobayashi等[36]在狗的前交叉韧带的前内侧束上制造锥形的缺损,局部运用10 μg 碱性成纤维细胞生长因子,观察其对前交叉韧带愈合的影响,结果发现碱性成纤维细胞生长因子能促进前交叉韧带部分缺损早期瘢痕修复。 促进腱骨愈合:Würgler-Hauri等[37]研究发现,大鼠肩袖损伤修复后1周腱骨愈合界面碱性成纤维细胞生长因子表达达高峰,8周后再次增高。他们推断碱性成纤维细胞生长因子在术后初期高表达与促进细胞增殖有关,8周后的高表达则与组织重塑有关。 Ide等[38]报道局部运用含碱性成纤维细胞生长因子(100 mg/g)纤维蛋白胶能增加大鼠急性肩袖损伤修复术后2周腱骨愈合界面的组织学评分及生物力学强度,但术后4,6周碱性成纤维细胞生长因子组和对照组的组织学评分及生物力学强度均无显著性差异。研究同时发现碱性成纤维细胞生长因子100 mg/g较40 mg/g更能促进腱骨界面成骨。 Rodeo等[39]则发现骨形态发生蛋白2、骨形态发生蛋白7、转化生长因子β1-3以及成纤维细胞生长因子等生长因子混合用于腱骨界面能促明显进腱骨愈合。 构建生物工程组织:碱性成纤维细胞生长因子常被用作体外细胞培养构建组织工程肌腱[40-42]、软骨等。Sahoo等[43-44]采用一种复合了碱性成纤维细胞生长因子并具有缓释作用支架作为支架材料构建组织工程肌腱。该支架材料能在局部释放质量浓度为6.5-13.5 ng/L碱性成纤维细胞生长因子,促进骨髓间充质干细胞在支架材料上附着、增殖并向腱细胞分化。Ishii等[45]报道采用含碱性成纤维细胞生长因子(917 μg/L)纤维蛋白胶能修复全层关节软骨缺损。 给药方式:碱性成纤维细胞生长因子在体内可被降解,半衰期较短,在关节内的半衰期也不超过6 h。为充分发挥碱性成纤维细胞生长因子在体内的作用,需延长其作用时间,主要有以下3种方法:①利用微泵持续局部给药,维持局部有效的药物浓度。②采用多次反复注射的方法。③将碱性成纤维细胞生长因子与载体结合,让其缓慢缓放。前面报道的碱性成纤维细胞生长因子载体包括纤维蛋白胶、胶原、透明质酸、明胶海绵、羟基磷灰石等。 碱性成纤维细胞生长因子有很强的肝素亲和力,以此为基础Sakiyama-Elbert等[46-47]成功开发了纤维蛋白胶-肝素系统作为碱性成纤维细胞生长因子的缓释载体,可明显延长碱性成纤维细胞生长因子生物学作用时间。 2.2.2 纤维蛋白胶 纤维蛋白胶是一种低抗原生物大分子材料,是利用哺乳动物或人血液中有关成分,通过人工提取获得。纤维蛋白胶由两部分组成:①浓缩纤维蛋白原,XⅢ因子和抑肽酶,其中纤维蛋白原含量与胶体强度、黏合力等相关。②凝血酶及氯化钙,凝血酶的浓度决定了成胶速度与凝固时间。两部分混合后凝血酶酶切纤维蛋白原,释放出纤维蛋白A肽及B肽,促进纤维蛋白原转化为纤维蛋白,形成纤维蛋白单体,XⅢ因子促使纤维蛋白分子交联,聚合成网状。 凝血酶在钙离子存在下也参与纤维蛋白多肽的交联,使之形成坚固、不易降解的凝块。在体内纤溶酶作用下,通常纤维蛋白胶完全降解时间为两三周。 研究证实,纤维蛋白胶具有良好的生物相容性、可塑性和降解性,可以促进细胞外基质的合成,促进新血管的形成,不会导致炎症反应。纤维蛋白胶在成型之前两种成分都是液态,可以任意塑型,使用较为方便。 材料载体:纤维蛋白胶降解过程中复合的药物(材料)得以释放,从而与成骨、组织修复同步。Abiraman等[48]将纤维蛋白胶包被羟基磷灰石颗粒、生物活性玻璃陶瓷和磷酸钙硅酸钙系统后分别植入鼠股四头肌内,以未包被材料作为对照,结果表明纤维蛋白胶可能有骨诱导作用。 Yamada等[49]将纤维蛋白胶、β-磷酸三钙和间充质干细胞复合,植入小鼠皮下,8周后组织学检测表明植入部位有新骨生成。 Guehennec等[50]采用纤维蛋白胶与双相磷酸钙颗粒构建可注射型材料修复骨缺损,结果发现单独使用磷酸钙组新生骨出现在颗粒的表面,纤维蛋白胶与磷酸钙联合使用组新生骨则出现在距磷酸钙表面一定距离的纤维网状结构中;而加入磷酸钙颗粒并不改变纤维蛋白胶的交联。 Minamide等[51]将自体骨片与纤维蛋白胶混合用于骨融合及缺损修补,其中包括11例后路脊柱融合、7例前路脊柱融合和1例骨缺损修补,观察发现仅需数分钟混合物就能黏附于受体部位。所有病例均未发生相关并发症,疗效较好。 生长因子缓释载体:纤维蛋白胶可保护其内部的生长因子不发生非特异性蛋白水解以及防止生长因子局部过快流失,而是随着纤维蛋白胶的降解逐步释放。Ishii等[45]将碱性成纤维细胞生长因子与纤维蛋白胶混合,尽管检测显示纤维蛋白胶中碱性成纤维细胞生长因子半衰期为24 h,但纤维蛋白胶所表现出的碱性成纤维细胞生长因子生物活性持续时间却超过5 d,能有效促进细胞增殖,成功修复兔关节软骨缺损。 Ide等[38]也运用含碱性成纤维细胞生长因子 (100 mg/g)的纤维蛋白胶成功促进大鼠急性肩袖损伤修复后的腱骨愈合。Patel等[52]用纤维蛋白胶包裹含有重组人骨形态发生蛋白2的可吸收海绵,将其植入椎板切除部位,结果发现纤维蛋白胶可延缓重组人骨形态发生蛋白2释放,避免了重组人骨形态发生蛋白2快速大量释放刺激局部骨组织生长而引起椎管的狭窄。Han等[53]用纤维蛋白封闭系统和人重组骨形态发生蛋白4复合物修复8 mm的颅骨缺损,术后2、8周分别进行组织学研究。结果发现纤维蛋白封闭系统与骨形态发生蛋白复合组在新骨形成能力及质量上均好于单纯纤维蛋白封闭系统组与空白对照组。他们认为这是由于纤维蛋白刺激了未分化的间充质细胞增殖,为骨形态发生蛋白的诱导提供了丰富的靶细胞,还能促进毛细血管长入。同时,纤维蛋白的三维网状结构有助于骨形态发生蛋白等生长因子附着及与靶细胞接触。 纤维蛋白中的骨形态发生蛋白等生长因子随着纤维蛋白降解缓慢释放,在植入材料周围形成骨形态发生蛋白浓度梯度,延长了骨形态发生蛋白等生长因子与靶细胞作用的时间,使其骨诱导活性得以最大限度发挥。 Sakiyama-Elbert等[46]利用纤维蛋白胶能与肝素结合,成功构建了纤维蛋白胶-肝素系统,作为碱性成纤维细胞生长因子、骨形态发生蛋白等成骨诱导作用生长因子的缓释载体,明显延长其生物学作用时间。该系统需要加入一种双域多肽段,其C端和N端分别含有肝素结合域和转谷氨酰胺酶底物。利用XⅢa因子的转谷氨酰胺酶活性,将双域多肽的N端共价结合到纤维蛋白胶上,肽段的C末端可通过静电作用结合肝素和肝素结合生长因子,通过体内肝素酶和血清酶的活性来实现生长因子缓释。 Thomopoulos等[47]发现随着纤维蛋白胶-肝素缓释系统中碱性成纤维细胞生长因子/肝素的比值逐渐减小(肝素含量增加),碱性成纤维细胞生长因子释放速度显著减慢。碱性成纤维细胞生长因子/肝素为1/1 000的纤维蛋白胶,无细胞诱导的碱性成纤维细胞生长因子释放半衰期超过10 d,而细胞诱导下碱性成纤维细胞生长因子释放则显示出明显的诱导释放曲线,二者均优于无肝素组。 细胞载体及支架:纤维蛋白胶的三维网状结构可为多种细胞提供迁移至创伤部位的途径,还能较好地介导细胞信号传导和细胞间相互作用,促进细胞粘附和增殖,修复组织缺损[54-55]。血纤维蛋白稳定因子ⅩⅢ已证明有利于干细胞在网状支架内迁移,并且促进这些细胞的增殖与分化[56]。纤维蛋白胶支架的形态、结构通常与凝血酶浓度有关,高浓度凝血酶使纤维蛋白形成细小的短纤维,造成纤维间的孔隙较小,可能导致宿主细胞和组织很难长入其中。 Bensaïd等[57]研究了不同纤维蛋白原和凝血酶浓度制备的纤维蛋白胶对人骨髓间充质干细胞伸展和增殖的影响,结果发现纤维蛋白原质量浓度为18 g/L、凝血酶活性为1.667 mkat/L时制备的纤维蛋白胶有利于人骨髓间充质干细胞的伸展和增殖。 Naif等[58]的研究证实纤维蛋白胶能增加骨髓基质细胞的黏附率并显著促进其增殖。 Kim等[59]将纤维蛋白混合自体培养的成骨细胞用于修复长骨损伤的实验,结果发现,在9周前,实验组的成骨作用明显高于对照组。 Pei等[60]取自体膝关节滑膜细胞与纤维蛋白胶复合后旋转培养1个月,见细胞保持原有形态,将其与材料复合后成功修复了兔股骨髁的软骨缺损。 Huang等[61]将纤维蛋白胶、骨髓间充质干细胞与转化生长因子β1复合物包埋于皮下、肌肉内及骨膜下,观察其诱导软骨形成的作用,结果发现,皮下包埋组及肌肉包埋组6周后复合物周围出现大量的细胞基质成分和血管组织;骨膜下包埋组在第2周出现软骨细胞,6周后新生软骨形成。 黎建伟等[62]采用骨髓间充质干细胞与纤维蛋白胶的混合物修复陈旧性关节软骨缺损。结果发现混合物在短期内能够良好地修复陈旧性关节软骨全层缺损,且均为类透明软骨组织修复。 崔赓等[63]以纤维蛋白胶为载体,分别与碱性成纤维细胞生长因子、重组人骨形态发生蛋白2制成可注射骨修复材料。体外研究表明,材料可使兔骨髓间充质干细胞增殖和分化,以纤维蛋白胶为载体的注射型骨修复材料可显著促进骨髓间充质干细胞贴壁率和成骨分化。 陈克明等[64]制备了骨髓间充质干细胞、纤维蛋白胶复合物,将该复合物用于修复桡骨骨缺损,结果证实复合物具有良好的骨修复效果。"
[1] Li CF, Hughes-Fulford M. Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J Bone Miner Res. 2006;21(6):946-955. [2] Itkin T, Kaufmann KB, Gur-Cohen S, et al. Fibroblast growth factor signaling promotes physiological bone remodeling and stem cell self-renewal. Curr Opin Hematol. 2013;20(3): 237-244. [3] Yao W, Hadi T, Jiang Y, et al. Basic fibroblast growth factor improves trabecular bone connectivity and bone strength in the lumbar vertebral body of osteopenic rats. Osteoporos Int. 2005;16:1939-1947. [4] Abbaspour A, Takata S, Sairyo K, et al. Continuous local infusion of fibroblast growth factor-2 enhances consolidation of the bone segment lengthened by distraction osteogenesis in rabbit experiment. Bone. 2008;42(1):98-106. [5] Mabilleau G, Aguado E, Stancu IC, et al. Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials. 2008;29(11):1593-1600. [6] Gao Y, Luo E, Hu J, et al. Effect of combined local treatment with zoledronic acid and basic fibroblast growth factor on implant fixation in ovariectomized rats. Bone. 2009;44(2): 225-232. [7] Nakamura K, Kawaguchi H, Aoyama I, et al. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res.1997;15:307-313. [8] Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab. 2001;86:875-880. [9] Chen WJ, Jinpushi S, Aoyama I, et al. Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae. J Bone Miner Metab. 2004;22(4):303-309. [10] Tabata Y, Yamada K, Miyamoto S, et al. Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials.1998;19:807-815. [11] Schnettler R, Alt V, Dingeldein E, et al. Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials. 2003;24:4603-4608. [12] Mabilleau G, Aguado E, Stancu IC, et al. Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials. 2008;29:1593-1600. [13] Abbaspour A, Takata S, Sairyo K, et al. Continuous local infusion of fibroblast growth factor-2 enhances consolidation of the bone segment lengthened by distraction osteogenesis in rabbit experiment. Bone. 2008;42(1):98-106. [14] Jiang XW, Zou SJ, Ye B, et al. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010;46(4):1156-1161. [15] Wiltfang J, Merten HA. Ectopic bone formation with the help of growth factor bFGF. J Cranio Maxillo Facial Surg. 1996;24: 300-304. [16] Guan JJ, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release. 2007;120:70-78. [17] Li Y, Lee IS, Cui FZ, et al. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials. 2008;29:2025-2032. [18] Gao Y, Zhu SS, Luo E, et al. Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats. J Control Release. 2009;139:15-21. [19] Nakahara T, Nakamura T, Kobayashi E, et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 2003;9: 153-162. [20] Varkey M, Kucharski C, Doschak MR, et al. Osteogenic response of bone marrow stromal cells from normal and ovariectomized rats treated with a low dose of basic fibroblast growth factor. Tissue Eng. 2007;13:809-817. [21] Iwasaki M, Nakahara H, Nakata K, et al. Regulation of proliferation and osteochondrogenic differentiation of periosteum-derived cells by transforming growth factor-beta and basic fibroblast growth factor. J Bone Joint Surg Am. 1995;77: 543-554. [22] Zheng YH, Su K, Jian YT, et al. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med. 2011;5(7):540-550. [23] Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest. 1988;81: 1572-1577. [24] Nakamura K, Kurokawa T, Kawaguchi H, et al. Stimulation of endosteal bone formation by local intraosseous application of basic fibroblast growth factor in rats. Rev Rhum Engl Ed. 1997; 64:101-105. [25] Terashima Y, Shimabukuro Y, Terashima H, et al. Fibroblast growth factor-2 regulates expression of osteopontin in periodontal ligament cells. J Cell Physiol. 2008;216: 640-650. [26] Spanholtz TA, Theodorou P, Holzbach T, et al. Vascular endothelial growth factor (VEGF165) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network--a future therapy for ischemically challenged tissue. J Surg Res. 2011;171(1):329-338. [27] Lee KY, Peters MC, Mooney DJ. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release. 2003;87: 49-56. [28] Rabie A, Mei Lu. Basic fibroblast growth factor up-regulates the expression of vascular endothelial growth factor during healing of allogeneic bone graft. Arch Oral Biol. 2004;49; 1025-1033. [29] Chaudhary LR, Avioli LV. Extracellular-signal regulated kinase signaling pathway mediates downregulation of type I procollagen gene expression by FGF-2, PDGF-BB, and okadaic acid in osteoblastic cells. J Cell Biochem. 2000;76(3): 354-359. [30] Palmon A, Roos H, Edel J, et al. Inverse dose- and time-dependent effect of basic fibroblast growth factor on the gene expression of collagen type I and matrix metallpproteinase-1 by periodontal ligament cells in culture. J Periodontol. 2000;71:974-980. [31] Shalhoub V, Ward S C, Sun B, et al. Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3. E1 cell proliferation and inhibit mineralization. Calcif Tissue Int. 2011;89(2):140-150. [32] Varghese S, Ramsby ML, Jeffrey JJ, et al. Basic fibroblast growth factor stimulates expression of interstitial collagenase and inhibitors of metalloproteinases in rat bone cells. Endocrinology. 1995;136:2156-2162. [33] Chan BP, Fu SC, Qin L, et al. Supplementation-time dependence of growth factors in promoting tendon healing. Clin Orthop Relat Res. 2006;448:240-247. [34] Chan BP, Fu S, Qin L, et al. Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand. 2000;71(5):513-518. [35] Fukui N, Katsuragawa Y, Sakai H, et al. Effect of local application of basic fibroblast growth factor on ligament healing in rabbits. Rev Rhum Engl Ed. 1998;65(6):406-414 . [36] Kobayashi D, Kurosaka M, Yoshiya S, et al. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Ar throsc. 1997;5(3):189-194. [37] Würgler-Hauri CC, Dourte LM, Baradet TC, et al. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg. 2007;55(16): 198-203. [38] Ide J, Kikukawa K, Hirose J, et al. The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon. J Shoulder Elbow Surg. 2009;18: 391-398. [39] Rodeo SA, Potter HG, Kawamura S, et al. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am. 2007;89:2485-2497. [40] Hankemeier S, Keus M, Zeichen J, et al. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng. 2005;11(1-2):41-49. [41] Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy. 2006;22(4):441-451. [42] Petrigliano FA, English CS, Barba D, et al. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. Tissue Eng. 2007;13(11): 2721-2731. [43] Sahoo S, Toh SL, Goh JCH. bFGF-releasing silk PLGA-based biohybrid scaffold for ligamenttendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;(31): 2990-2998. [44] Sahoo S, Ang LT, Goh JCH, et al. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation. 2010;79(2):102-110. [45] Ishii I, Mizuta H, Sei A, et al. Healing of fullthickness defects of the articular cartilage in rabbitsusing fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br. 2007;89: 693-700. [46] Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release. 2000;65(3):389-402. [47] Thomopoulos S, Das R, Sakiyama-Elbert S, et al. bFGF and PDGF-BB for tendon repair controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng. 2010; 2(38):225-234. [48] Abiraman S, Varma HK, Umashankar PR, et al. Fibrin glue as an osteoinductive protein in a mouse model. Biomaterials. 2002;23(14):3023-3031. [49] Yamada Y, Boo JS, Ozawa R, et al. Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold. J Craniomaxillofac Surg. 2003; 31(1):27-33. [50] Le Guehennec L, Goyenvalle E, Aguado E, et al. MBCP biphasic calcium phosphate granules and tissucol fibrin sealant in rabbit femoral defects: the effect of fibrin on bone ingrowth. J Mater Sci Mater Med. 2005;16(1):29-35. [51] Minamide A, Kawakami M, Hashizume H, et al. Evaluation of carriers of bonemorphogenetic protein for spinal fusion. Spine. 2001;26(8):933-999. [52] Patel VV, Zhao L, Wong P, et al. Controlling bone morphogenetic protein diffusion and bone morphogenetic protein-stimulated bone growth using fibrin glue. Spine. 2006; 31(11):1201-1206. [53] Han DK, Kim CS, Jung UW, et al. Effect of a fibrin-fibronectin sealing system as a carrier for recombinant human bonemorphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol. 2005;76(12):2216-2222. [54] Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Engineering Part B. 2008;14(2):199-215. [55] Kim BS, Sung HM, You HK, et al. Mesenchymal stem cells derived from alveolar bone marrow: growth and osteoblast differentiation in fibrin gel. Tissue Eng Regen Med. 2011;8: 208. [56] Richardson V R, Cordell P, Standeven K F, et al. Substrates of Factor XⅢ-A: roles in thrombosis and wound healing. Clin Sci. 2013;124(3):123-137. [57] Bensaïd W, Triffitt JT, Blanchat C, et al. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003;24(14):2497-2502. [58] Naif MB , Varma HK, John A. Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells. Tissue Eng Part A. 2009;15(7):1619-1631. [59] Kim SJ, Jang JD, Lee SK. Treatment of long tubular bone defect of rabbit using autologous cultured osteoblasts mixed with fibrin. Cytotechnology. 2007;54(2):115- 120. [60] Pei M, He F, Boyce BM, et al . Repair of full - thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage. 2009;17(6):714-722. [61] Huang Q, Goh JC, Hutmacher DW, et al. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor betal and the potential for in situ chondrogenesis. Tissue Eng. 2002;8(3):469-482. [62] 黎建伟,裴国献,缪旭东,等.骨髓基质干细胞与纤维蛋白胶复合修复陈旧性关节软骨缺损的实验研究[J].中华创伤骨科杂志,2005, 8(5):443-447. [63] 崔赓,胡蕴玉,雷伟,等.可注射型骨修复材料对兔MSC增殖及分化的影响[J].中国矫形外科杂志,2003,11(1):45. [64] 陈克明,葛宝丰,刘兴炎,等.纤维蛋白用做骨组织工程载体并修复骨缺损[J].中国矫形外科杂志,2005,16(13):1241-1243. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||