Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (20): 3263-3266.doi: 10.3969/j.issn.2095-4344.2014.20.027
Previous Articles Next Articles
Kang Chen1, Zhang Bin1, Sun Yao2
Received:
2014-02-17
Online:
2014-05-14
Published:
2014-05-14
Contact:
Zhang Bin, Doctoral supervisor, Professor, Department of Stomatology, the Second Affiliated Hospital of Harbin Medical University, Laboratory of Hard Tissue Development and Regeneration, Harbin 150086, Heilongjiang Province, China
About author:
Kang Chen, Studying for master’s degree, Department of Stomatology, the Second Affiliated Hospital of Harbin Medical University, Laboratory of Hard Tissue Development and Regeneration, Harbin 150086, Heilongjiang Province, China
Supported by:
the National Natural Science Foundation of China, No. 81170960; the National Key Scientific Instrument and Equipment Development Project of China, No. 2011YQ04008708
CLC Number:
Kang Chen, Zhang Bin, Sun Yao. Diabetes mellitus and bone metabolic disorders: valuable prevention and treatment[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(20): 3263-3266.
2.1 糖尿病对骨改建的影响 骨组织的改建是贯穿整个生命历程的微观动态过程。骨组织通过有序的改建来适应体内外各种刺激以及调节体内钙离子的平衡。在骨组织的改建过程中,骨密度的变化是一个重要的衡量指标。以双能X射线吸收测定法为基础的骨密度检测,至今为止仍为临床诊断骨质疏松、评价骨质量的标准方法[2]。近来,通过CT扫描检测四肢骨密度也逐渐开始被临床应用。 研究发现1型糖尿病患者骨密度下降且受年龄和性别的影响。在一项对48名1型糖尿病青少年的研究中,研究人员发现男性1型糖尿病患者骨密度减少10%,而女性只减少5%[3]。Mastrandrea等[4]证实,1型糖尿病的儿童和青少年桡骨骨密度降低;1型糖尿病成年患者股骨骨密度有所降低,但腰椎骨密度没有受到影响。更为重要的是, 1型糖尿病患者骨折风险的增加是毋庸置疑的。据统计, 1型糖尿病患者低创伤性骨折的发生率是正常人的7-12 倍[5-6]。 2型糖尿病对骨密度的影响有很大争议。Abdulameer等[7]总结了1950至2010年间2型糖尿病与骨密度关系的文章,发现有26个研究表示骨密度增加,13个表示减少,还有8个研究认为没有变化。之所以会有这样的结果,可能是因为X射线没有检测出2型糖尿病导致的细微骨代谢紊乱。高分辨率的外围定量CT及其有限元分析的问世,为解决这一问题提供了可靠的方法。在近期的一项研究中,研究人员调查了绝经后2型糖尿病女性患者有无发生过低创伤性骨折的情况,结果发现发生过骨折的2型糖尿病女性患者与没发生过骨折的患者相比,髋骨骨密度明显降低;更重要的是,骨折过的患者皮质骨的孔隙率明显升高[8]。所以说,皮质骨的骨质量对于引发低创伤性骨折是更为重要的因素。尽管2型糖尿病与骨密度的关系还有待进一步确定,但2型糖尿病患者骨折风险的增加已经被证实。据统计,2型糖尿病患者的骨折发生率是正常人群的2倍[9]。 虽然1型糖尿病和2型糖尿病在发病机制和增加骨折风险上存在差异,但糖尿病性骨病病因学中细胞分子学机制是相同的[10],其中包括糖尿病对骨细胞、成骨细胞、破骨细胞、骨髓间充质干细胞等与骨代谢相关细胞的影响及其相关基因蛋白的表达差异[11]。 2.2 糖尿病对骨吸收的影响 破骨细胞调节的骨吸收开始于成骨细胞启动了破骨细胞前体的增殖,并通过巨噬细胞集落刺激因子,促进破骨细胞前体向成熟的破骨细胞分化。巨噬细胞集落刺激因子既可以减少破骨细胞的凋亡,延长细胞周期,还可以促进其增殖、分化,促使破骨细胞成熟[12]。同时,成骨细胞为破骨细胞的形成分泌了一种重要的中介物,核因子κB受体活化因子配体,它可以与前体破骨细胞细胞膜上的核因子κB受体活化因子相结合,刺激成熟的破骨细胞形成。同时,成骨细胞分泌的骨保护素可以竞争性地结合核因子κB受体活化因子配体,抑制核因子κB受体活化因子配体和核因子κB受体活化因子的结合,阻滞成熟的破骨细胞生成[13]。 在糖尿病早期,炎性细胞因子表达提高。这些炎性因子能直接地影响骨细胞的增殖和凋亡。例如肿瘤坏死因子,它主要由单核巨噬细胞产生,具有强烈的促进骨吸收作用。肿瘤坏死因子α既能促进破骨细胞的增殖和分化,又能抑制破骨细胞凋亡。此外,肿瘤坏死因子α还可抑制成骨细胞功能,降低碱性磷酸酶活性,减少骨组织内钙的沉积[14]。1型糖尿病小鼠模型显示,破骨细胞的数量有所增加,同时增加了巨噬细胞集落刺激因子、核因子κB受体活化因子配体、肿瘤坏死因子α的表达[15]。与此同时,1型糖尿病小鼠成骨细胞的凋亡增加了2倍,骨髓中凋亡因子的表达也有所增加;用肿瘤坏死因子α的中和抗体进行治疗,结果能减少成骨细胞的凋亡[16]。但是,在最近的一项人类1型糖尿病的研究中,研究人员证实患者破骨细胞的活性有所下降[17],破骨细胞的分化和功能是被抑制的。所以说,在糖尿病患者体内,尽管破骨细胞的数量有所增加,但其功能是下降的,骨吸收没有过度地增加。 2.3 糖尿病对骨形成的影响 在骨吸收后,紧接着成骨细胞介导骨的形成,用新的矿化的骨填满骨吸收的凹陷。成骨细胞分泌的Ⅰ型胶原,进入有机基质类骨质中,借助碱性磷酸酶、骨钙蛋白、骨桥蛋白进行矿化,最终形成成熟的羟基磷灰石晶体[2]。成骨时,碱性磷酸酶、骨钙蛋白、骨桥蛋白的表达均上调,这被认为是成骨细胞分化成熟的标志。但不幸的是,糖尿病导致碱性磷酸酶、骨钙蛋白、骨桥蛋白的水平均下降[18-19]。体外、体内实验以及临床数据均已证实,糖尿病破坏了骨形成过程,其主要机制为成骨细胞及促进成骨的细胞因子被抑制[18-20]。 骨钙蛋白能在骨基质中与钙离子和羟基磷灰石相结合,是非常重要的矿化因子。Clemens等[21]认为,糖尿病与骨组织之间的关系与骨钙蛋白有很大的相关性;并且认为成骨细胞是胰岛素作用的靶细胞,成骨细胞胰岛素受体的激活能加大骨钙蛋白的活力。临床数据显示,2型糖尿病患者血清中的骨钙蛋白水平确实是降低的[22]。到目前为止,骨钙蛋白水平的降低反映的是成骨细胞活性还是糖代谢程度,这个问题还不清楚。但可以肯定的是,骨钙蛋白能增加胰岛β细胞的增殖和胰岛素的分泌及其敏感性[23];还能刺激睾丸,产生睾丸素(睾丸素是调控骨量和骨重塑的重要激素)[24]。因此,骨钙蛋白有望成为一个新的研究热点去改善糖尿病性骨病患者的骨健康[25]。 维生素D对于骨形成来说也是非常重要的。存在高骨折风险的糖尿病患者,通过提高血清中维生素D的水平,骨折的风险有所降低[26]。但遗憾的是,维生素D对血糖没有任何影响[27]。更加令研究人员困惑的是,无论是否患有糖尿病,人们血清中的维生素D水平均是偏低的,所以很难说糖尿病患者骨折风险的增加与维生素D的缺乏有什么关系[10]。 2.4 骨髓间充质干细胞的分化与高血糖 骨髓间充质干细胞是来源于骨组织的多功能干细胞,可以分化为成骨细胞、脂肪细胞以及软骨细胞,对于骨组织的形成和代谢具有重要的作用。Runx2是成骨细胞分化中一个重要的调控因子,可刺激骨髓间充质干细胞向成骨细胞分化;PPARγ是脂肪形成过程中一个重要的转录因子,可刺激骨髓间充质干细胞向脂肪细胞分化。 最近的体外实验研究表明,高浓度的葡萄糖明显抑制成骨细胞的增长和矿化,同时抑制成骨相关基因的表达(其中包括Runx2、Ⅰ型胶原蛋白、骨钙蛋白、骨粘连蛋白);还能刺激脂肪形成基因的表达(其中包括PPARγ、aP2、抵抗素、脂肪酶)[28]。1型糖尿病小鼠模型中,PPARγ、aP2、抵抗素的mRNA表达上调[29],Runx-2的表达下降[30],同时这些糖尿病小鼠骨髓中有脂肪细胞的增加。高糖抑制成骨细胞分化的一个主要因素就是增加了PPARγ的表 达[31]。实验证实,在1型糖尿病小鼠模型中,阻断PPARγ的表达,确实导致骨髓脂肪的减少和高血脂的降低,但是PPARγ的阻断没有阻止骨量流失,也没有阻止成骨细胞标记物(如Runx2、骨钙蛋白)的抑制[32]。因此,糖尿病在诱导骨髓间充质干细胞分化时,既有抑制成骨细胞分化的作用,又有刺激脂肪细胞形成的功能,两者是不相干预的。 一些糖尿病治疗的药物对于骨髓间充质干细胞的分化也有不同的影响。二甲双胍作为糖尿病患者的常用药,降低血糖的同时激活了Runx2,刺激骨髓间充质干细胞向成骨细胞分化,增加骨的形成[33]。但格列酮类药物却能激活PPARγ,使准备向成骨细胞分化的骨髓间充质干细胞,分化为脂肪细胞,增加了脂肪的形成[34]。所以说,糖尿病骨病患者在选择糖尿病治疗药物时,就要尽量选用二甲双胍,避免格列酮类药物的使用。 2.5 骨代谢相关激素和高糖的关系 2.5.1 甲状旁腺素 甲状旁腺素是调节骨代谢、维持机体钙磷平衡的主要内分泌激素,由甲状旁腺主细胞合成后分泌。体内99%以上的钙主要以磷酸盐形式贮存在骨组织内。骨组织中贮存的钙和血浆中游离的钙始终处于动态平衡状态。甲状旁腺素可以动员骨钙入血,提高血钙的同时降低了骨钙。其机制为甲状旁腺素可以刺激巨噬细胞集落刺激因子和核因子κB受体活化因子配体等破骨细胞因子的表达[35]。研究发现,高糖可以导致甲状旁腺素的分泌增加,这是由于高糖产生的渗透性利尿,导致钙磷镁离子的浓度降低。低钙低镁对甲状旁腺的刺激,使其功能亢进,增加甲状旁腺素的分泌,增强破骨细胞活性,出现骨吸收的增加、骨量的减少[36]。 2.5.2 胰岛素 早在20世纪90年代,Hill等[37]就证实了胰岛素可以增加成骨细胞的增值,减少其凋亡;Thomas 等[38]在破骨细胞上发现了胰岛素受体,并且证明胰岛素抑制破骨细胞的活性。胰岛素治疗可以改善骨量和骨代谢相关基因的表达[39],这也进一步证实了胰岛素在骨形成方面的作用。Hamann等[25]系统地阐述了胰岛素在成骨方面的作用机制。胰岛素可以促进Runx2的表达,由于糖尿病患者胰岛素水平下降,导致Runx2的表达降低,固骨髓间充质干细胞向成骨细胞的分化显著减少。与此同时,胰岛素的降低又减少了其对成骨细胞产生骨钙蛋白的刺激,骨钙蛋白的低表达则是糖尿病骨病的重要发病机制。因此,胰岛素的补充对于糖尿病骨病患者来说,同样是不容忽视的。 2.5.3 胰岛素样生长因子1 在骨骼短小、骨发育缓慢、骨密度减低和骨质疏松等病例中,常有胰岛素样生长因子1及其受体缺乏的报道[35]。在1型糖尿病小鼠模型中,软骨细胞数量有所降低,同时软骨细胞中胰岛素样生长因子1的受体也有所减少,这不仅会导致软骨细胞的增值下降,还会使骨组织变得瘦小[40]。许多胰岛素对骨合成代谢的作用都是由胰岛素样生长因子1和胰岛素样生长因子1受体来调节的[12]。糖尿病患者体内胰岛素的缺乏会导致胰岛素样生长因子1结合蛋白的增加,最终导致用于骨代谢的胰岛素样生长因子1的水平下降[41]。临床数据显示,1型糖尿病儿童体内,胰岛素样生长因子1低表达,胰岛素样生长因子1结合蛋白高表达[42]。因此,胰岛素样生长因子1的缺乏是糖尿病患者体内减少骨形成的另一刺激因素。 2.5.4 胰淀素和Preptin 除了胰岛素之外,胰岛β细胞还产生了其他促进骨形成的激素,如胰淀素和preptin。胰淀素能增加成骨细胞和软骨细胞的增殖和活性、抑制破骨细胞功能。在1型糖尿病小鼠模型中,由于胰岛β细胞的破坏,胰淀素的分泌是减少的。但也有临床报道,在没有糖尿病的骨质疏松患者体内,也发现胰淀素有所减少[43]。用胰淀素对1型糖尿病大鼠进行治疗,结果发现胰淀素刺激骨形成、抑制骨吸收,最终导致骨量和骨强度都有所增 加[44]。胰淀素作用于成骨细胞的受体也被发现[45],固胰淀素在糖尿病骨病中的作用日显突出。Preptin与成骨细胞的增殖和其细胞凋亡的抵抗有关。动物实验证实,Preptin能增加骨面积,促进骨表面矿化[46]。虽然对于Preptin与糖尿病骨病之间关系的研究还不是很多,但不排除Preptin对于糖尿病骨病存在重要的意义。 2.5.5 瘦素 瘦素由脂肪细胞释放[47],它能抑制食欲、增加产热作用。在使用瘦素抑制剂处理的小鼠中,有骨组织孔隙率增加的报道[48]。在最近的研究中,研究人员发现瘦素对于骨组织的作用主要是通过血清素调节的[49],同时瘦素的受体在成骨细胞和骨髓间充质干细胞中也被发现。在其他的一些研究中,瘦素有促进皮质骨形成的作用,并且瘦素还能诱导骨髓间充质干细胞向成骨细胞分化,抑制骨髓间充质干细胞向脂肪细胞的分化[50]。还有实验证实,瘦素可以提高胰岛素的敏感性。因此,瘦素也许会成为糖尿病骨病的另一种治疗药物[51]。 2.6 晚期糖基化终末产物 晚期糖基化终末产物是一种在生理环境中生成的稳定的共价化合物。高血糖会导致多种组织中晚期糖基化终末产物的增加,其中包括骨基质。研究发现,累积在细胞外基质的晚期糖基化终末产物与骨细胞表面的晚期糖基化终末产物受体相结合,随后产生细胞内活性氧产物、促炎症反应以及激活一连串的信号传导通路(其中包括p38、JNK MAP kinases、Rho GTPases、PI3K、JAK/STAT、核因子κB等)[52]。 近日,McCarthy等[53]详细阐述了晚期糖基化终末产物对骨组织的作用机制。晚期糖基化终末产物在骨胶原上的累积,被作者认为是糖尿病骨病发病机制的核心。由于糖尿病的存在,体内的血糖、循环中的细胞内活性氧、羰基应激被升高,而这些因素能诱导晚期糖基化终末产物的过量产生。晚期糖基化终末产物在骨细胞外基质中与胶原蛋白结合后,一方面,直接促使骨机械性能下降,其中包括骨强度、骨屈服能力的下降;另一方面,晚期糖基化终末产物的胶原结合物与骨细胞中的受体晚期糖基化终末产物受体相互作用,抑制了骨细胞的功能,降低了骨代谢,最终导致糖尿病骨病的发生。 骨基质中晚期糖基化终末产物(例如戊糖素)的增加,导致骨组织胶原蛋白逐渐变脆[54]。有研究表明,尿液中的戊糖素水平与2型糖尿病骨折风险的增加有关[55];血液中的戊糖素水平与椎骨骨折的发生率有关[56]。骨基质变脆,减少了骨组织抵抗微损伤的能力,所以说糖尿病对骨抗断裂性的影响,不但要考虑骨强度的降低,还要重视骨脆性的变化。 值得注意的是,体内、体外实验都已证实抗糖尿病药物和抗骨质疏松药物均能改善晚期糖基化终末产物对骨细胞的影响[57-58],这也为糖尿病骨病的治疗提供了一项新的选择。"
[1] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1): S67-74. [2] Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19(5):444-451. [3] Saha MT, Sievänen H, Salo MK, et al. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int. 2009;20(8): 1401-1406. [4] Mastrandrea LD, Wactawski-Wende J, Donahue RP, et al. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care. 2008;31(9): 1729-1735. [5] Forsen L, Meyer HE, Midthjell K, et al. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trøndelag Health Survey. Diabetologia. 1999;42(8): 920-925. [6] Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7): 1192-1197. [7] Abdulameer SA, Sulaiman SAS, Hassali MAA, et al. Osteoporosis and type 2 diabetes mellitus: what do we know, and what we can do? Patient Prefer Adherence. 2012;6:435. [8] Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2): 313-324. [9] Melton LJ, Leibson CL, Achenbach SJ, et al. Fracture Risk in Type 2 Diabetes: Update of a Population‐Based Study. J Bone Miner Res. 2008;23(8): 1334-1342. [10] Sealand R, Razavi C, Adler RA. Diabetes Mellitus and Osteoporosis. Curr Diab Rep. 2013;13(3):411-418. [11] Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes. 2011;2(3): 41. [12] Matsuo K, Irie N. Osteoclast–osteoblast communication. Arch Biochem Biophys. 2008;473(2): 201-209. [13] Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2): 251-264. [14] R?szer T. Inflammation as death or life signal in diabetic fracture healing. Inflamm Res. 2011;60(1): 3-10. [15] Kayal RA, Tsatsas D, Bauer MA, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007;22(4): 560-568. [16] Coe LM, Irwin R, Lippner D, et al. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol. 2011;226(2): 477-483. [17] Pater A, Sypniewska G, Pilecki O. Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2010;23(1-2): 81-86. [18] Botolin S, Faugere MC, Malluche H, et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. Endocrinology. 2005;146(8): 3622-3631. [19] Massé PG, Pacifique MB, Tranchant CC, et al. Bone metabolic abnormalities associated with well-controlled type 1 diabetes (IDDM) in young adult women: a disease complication often ignored or neglected. J Am Coll Nutr. 2010; 29(4): 419-429. [20] Gopalakrishnan V, Vignesh RC, Arunakaran J, et al. Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol. 2006;84(1): 93-101. [21] Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011; 26(4): 677-680. [22] Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009, 94(1): 45-49. [23] Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3): 456-469. [24] Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5): 796-809. [25] Hamann C, Kirschner S, Günther KP, et al. Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012; 8(5): 297-305. [26] Pittas AG, Nelson J, Mitri J, et al. Plasma 25-Hydroxyvitamin D and Progression to Diabetes in Patients at Risk for Diabetes An ancillary analysis in the Diabetes Prevention Program. Diabetes Care. 2012;35(3): 565-573. [27] Harris SS, Pittas AG, Palermo NJ. A randomized, placebo-controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes Obes Metab. 2012;14(9): 789-794. [28] Wang W, Zhang X, Zheng J, et al. High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Molecul Cell Biochem. 2010;338(1-2): 115-122. [29] Botolin S, Faugere MC, Malluche H, et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. Endocrinology. 2005; 146(8): 3622-3631. [30] Lu H, Kraut D, Gerstenfeld LC, et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144(1): 346-352. [31] Moerman EJ, Teng K, Lipschitz DA, et al. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR‐γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell. 2004;3(6): 379-389. [32] Botolin S, McCabe LR. Inhibition of PPARγ prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209(3): 967-976. [33] Jang WG, Kim EJ, Bae IH, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011;48(4): 885-893. [34] Kawai M, Sousa KM, MacDougald OA, et al. The many facets of PPARγ: novel insights for the skeleton. Am J Physiol Endocrinol Metab. 2010;299(1): E3-9. [35] Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13(7): 791-801. [36] Vestergaard P. Bone metabolism in type 2 diabetes and role of thiazolidinediones. Curr Opin Endocrinol Diabetes Obes. 2009;16(2): 125-131. [37] Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138(9): 3849-3858. [38] Thomas DM, Udagawa N, Hards DK, et al. Insulin receptor expression in primary and cultured osteoclast-like cells. Bone. 1998;23(3): 181-186. [39] Pastor MMC, Lopez-Ibarra PJ, Escobar-Jimenez F, et al. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteop Int. 2000; 11(5): 455-459. [40] Nixon AJ, Lillich JT, Burton‐Wurster N, et al. Differentiated cellular function in fetal chondrocytes cultured with insulin-like growth factor-I and transforming growth factor-β. J Orthop Res. 1998;16(5): 531-541. [41] Conover CA, Lee PD, Riggs BL, et al. Insulin-like growth factor-binding protein-1 expression in cultured human bone cells: regulation by insulin and glucocorticoid. Endocrinology. 1996;137(8): 3295-3301. [42] Moyer-Mileur LJ, Slater H, Jordan KC, et al. IGF-1 and IGF-Binding Proteins and Bone Mass, Geometry, and Strength: Relation to Metabolic Control in Adolescent Girls With Type 1 Diabetes. J Bone Miner Res. 2008;23(12): 1884-1891. [43] Bronský J, Pr?ša R. Amylin fasting plasma levels are decreased in patients with osteoporosis. Osteop Int. 2004; 15(3): 243-247. [44] Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and Bone Metabolism in Streptozotocin-Induced Diabetic Rats. J Bone Miner Res. 2001;16(5): 958-965. [45] Dacquin R, Davey RA, Laplace C, et al. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol. 2004;164(4): 509-514. [46] Cornish J, Callon KE, Bava U, et al. Preptin, another peptide product of the pancreatic β-cell, is osteogenic in vitro and in vivo. Ame J Physiol Endocrinol Metabol. 2007;292(1): E117-122. [47] Lecka-Czernik B, Gubrij I, Moerman EJ, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem. 1999;74(3): 357-371. [48] Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2): 197-207. [49] Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010;191(1): 7-13. [50] Kawai M, Devlin MJ, Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol. 2009;5(7): 365-372. [51] Hedbacker K, Birsoy K, Wysocki RW, et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metabol. 2010; 1(1): 11-22. [52] Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9): 526-539. [53] McCarthy AD, Molinuevo MS, Cortizo AM. Ages and Bone Ageing in Diabetes Mellitus. J Diabetes Metab. 2013;4(276): 2. [54] Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteop Int. 2010;21(2): 195-214. [55] Schwartz AV, Garnero P, Hillier TA, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metabol. 2009;94(7): 2380-2386. [56] Yamamoto M, Yamaguchi T, Yamauchi M, et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(3): 1013-1019. [57] Fernández JM, Molinuevo MS, Sedlinsky C, et al. Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation. Europ J Pharmacol. 2013;706(1-3):41-77. [58] Molinuevo MS, Schurman L, McCarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res. 2010;25(2): 211-221. |
[1] | Tang Hui, Yao Zhihao, Luo Daowen, Peng Shuanglin, Yang Shuanglin, Wang Lang, Xiao Jingang. High fat and high sugar diet combined with streptozotocin to establish a rat model of type 2 diabetic osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1207-1211. |
[2] | Li Zhongfeng, Chen Minghai, Fan Yinuo, Wei Qiushi, He Wei, Chen Zhenqiu. Mechanism of Yougui Yin for steroid-induced femoral head necrosis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1256-1263. |
[3] | Hou Guangyuan, Zhang Jixue, Zhang Zhijun, Meng Xianghui, Duan Wen, Gao Weilu. Bone cement pedicle screw fixation and fusion in the treatment of degenerative spinal disease with osteoporosis: one-year follow-up [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 878-883. |
[4] | Li Shibin, Lai Yu, Zhou Yi, Liao Jianzhao, Zhang Xiaoyun, Zhang Xuan. Pathogenesis of hormonal osteonecrosis of the femoral head and the target effect of related signaling pathways [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 935-941. |
[5] | Xiao Fangjun, Chen Shudong, Luan Jiyao, Hou Yu, He Kun, Lin Dingkun. An insight into the mechanism of Salvia miltiorrhiza intervention on osteoporosis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 772-778. |
[6] | Liu Bo, Chen Xianghe, Yang Kang, Yu Huilin, Lu Pengcheng. Mechanism of DNA methylation in exercise intervention for osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 791-797. |
[7] | Nie Shaobo, Li Jiantao, Sun Jien, Zhao Zhe, Zhao Yanpeng, Zhang Licheng, Tang Peifu. Mechanical stability of medial support nail in treatment of severe osteoporotic intertrochanteric fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 329-333. |
[8] | Zhong Yuanming, Wan Tong, Zhong Xifeng, Wu Zhuotan, He Bingkun, Wu Sixian. Meta-analysis of the efficacy and safety of percutaneous curved vertebroplasty and unilateral pedicle approach percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 456-462. |
[9] | Chen Ziyang, Pu Rui, Deng Shuang, Yuan Lingyan. Regulatory effect of exosomes on exercise-mediated insulin resistance diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 4089-4094. |
[10] | Gao Shan, Huang Dongjing, Hong Haiman, Jia Jingqiao, Meng Fei. Comparison on the curative effect of human placenta-derived mesenchymal stem cells and induced islet-like cells in gestational diabetes mellitus rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3981-3987. |
[11] | Zhu Yun, Chen Yu, Qiu Hao, Liu Dun, Jin Guorong, Chen Shimou, Weng Zheng. Finite element analysis for treatment of osteoporotic femoral fracture with far cortical locking screw [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3832-3837. |
[12] | Zou Shouping, Lu Daoyun, Ye Li. Minimally invasive percutaneous pedicle screw technique for thoracolumbar fractures: biomechanical changes of the spine during 6-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3865-3869. |
[13] | Wang Ziao, Song Wenhui, Liu Changwen . Short-segment fixation of thoracolumbar burst fractures: method modification and strategies to reduce failure [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(24): 3902-3907. |
[14] | Feng Guancheng, Fang Jianming, Lü Haoran, Zhang Dongsheng, Wei Jiadong, Yu Bingbing. How does bone cement dispersion affect the early outcome of percutaneous vertebroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3450-3457. |
[15] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||