Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (43): 6501-6506.doi: 10.3969/j.issn.2095-4344.2016.43.017
Previous Articles Next Articles
Received:
2016-08-02
Online:
2016-10-21
Published:
2016-10-21
Contact:
Gao Hui, Professor, Master’s supervisor, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
About author:
Huang Shi-qiao, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
Supported by:
CLC Number:
Huang Shi-qiao, Gao Hui .
2.1 临床粉碎性骨折治疗的现状 高能量损伤导致的骨折,尤其是一些复杂性粉碎性的骨折越来越多见,这在一定程度上给临床治疗带来了困难。四肢近关节的粉碎骨折,较小的碎骨片很难固定,如果去除过多势必导致骨缺损,影响骨折愈合。全世界每年因严重创伤造成粉碎性骨折而导致肢体残疾甚至死亡的患者数以万计。虽然近年来骨折治疗早期多采取积极的治疗手段,已使骨不连、骨缺损发病率明显下降,但粉碎性骨折的治疗仍是临床骨科治疗需要面对的一个难题[3]。 对于骨折的传统治疗多是通过螺钉、钢板、钢针、钢丝等进行固定,或仅保持骨折的力线位置让其自行愈合,这对粉碎性骨折来说难以将其形状、大小不一的碎骨块固定牢靠,骨折容易松动[4]。传统内固定材料一方面与骨折接触面积小应力较集中,另一方面可产生金属颗粒,均可引起骨折处骨质的吸收,失去固定作用,影响骨折愈合;同时金属内固定材料不仅刺激周围组织,有时还可产生排异反应[5],寄留在体内的内固定物还有发生断钉断板的危险。对较深部位或是邻近重要神经血管的骨折,如骨盆骨折、眶底骨折等,置入钢板等常会遇到困难,甚至损伤重要软组织;患者亦要承受再次手术的打击,内固定物易被骨痂、组织等包埋致取出困难。即便使用可吸收螺钉,钻孔等术中操作本就是一种创伤,削弱了骨的强度,不利于骨折愈合[6]。 随着氰基丙烯酸酯类黏合剂在医疗领域被广泛应用,采用骨黏合剂对骨碎块进行黏合复位是治疗粉碎性骨折的新方法,一旦通过骨黏合剂固定骨折,可减少传统内固定材料的使用,甚至是避免使用,以降低传统内固定手术带来的不利因素,这种方法具有广阔的前景。 2.2 氰基丙烯酸酯类化合物的特性 α-氰基丙烯酸酯类结构CNCH2CCOOR中α-碳原子上结合的-CN和-COOR含有电负性极强的基团,产生诱导效应,使得β位的碳原子产生较强的吸电性,只要遇到极微量的阴离子,如-OH、-NH2等,即会瞬间发生聚合反应。由于生物体组织的基本物质是蛋白质,而蛋白质是由氨基酸组成的线性大分子化合物,大分子两端含有-NH2及-COOH基团,因此它可以迅速黏合生物体组织,它的黏合能力极强,习惯上被称为“瞬干胶”。 α-氰基丙烯酸酯特别是α-氰基丙烯酸丁酯和α-氰基丙烯酸辛酯,是一类单组分、可常温固化且能与人体组织紧密结合的可生物降解组织胶黏剂和止血剂[7-9]。Wachter等[10]研究证实α-氰基丙烯酸酯通过在伤口表面聚合固化形成高分子膜,阻碍红细胞等通过从而达到止血的目的,同时还阻止了细菌的进入和接触,降低感染的发生。 有研究显示,α-氰基丙烯酸乙酯和α-氰基丙烯酸正丁酯体内半衰期为24-48周。尽管早期应用α-氰基丙烯酸酯类组织胶时,发现其在降解过程中难免会释放出少量的氰和甲醛等有毒物质,能够引起组织短暂性炎症反应或造成伤口愈合延迟[11],但在合成此类物质时可以通过加长侧链的办法,例如国内的复方505i和508系列黏合剂主要成分为α-氰基丙烯酸正丁酯、 α-氰基丙烯酸正辛酯等,使其安全性显著提高。动物实验证明,除α-氰基丙烯酸甲酯对组织有较强的炎性反应外,其余高级酯类是不会致畸、致突变、致癌的,且能在体内分解,无毒性积累[12]。可见,酯基分子链越长毒性越小,化学稳定性和生物相容性越好,但是降解速度相对较慢,黏度较低[13-14]。 因此,如何在胶黏强度和毒性之间取得一个平衡点,或者通过对胶进行改性,在降低毒性的同时还能增加胶黏强度,使之能更好地用于临床,成为对胶研究的关键所在。 2.3 氰基丙烯酸酯类骨黏合剂治疗骨折的研究进展 α-氰基丙烯酸酯类黏合剂已被应用于血管外科的中小管径血管吻合、血管栓塞、各类软组织修补、皮肤缝合等[15-19],而在骨科的应用由于其存在生物力学性能差等缺点仍受到一定的限制,故现多处于动物实验阶段。 Aksoy等[20]用α-氰基丙烯酸正丁酯修补兔鼻中隔,于12周发现新软骨细胞结构的形成。Fitzpatrick等[21]指出α-氰基丙烯酸酯黏合剂并不会阻碍新生骨周围血管的形成。Esteves等[22]通过对鼠颅骨的修补比较 α-氰基丙烯酸乙酯和α-氰基丙烯酸正辛酯的炎性反应,两者在局部组织均有分散的炎性反应并可持续 60 d,在α-氰基丙烯酸正辛酯组反应较严重。α-氰基丙烯酸乙酯炎性反应在10 d后明显减弱并集中在骨折断面周围[23]。有动物实验证明α-氰基丙烯酸酯类黏合剂与一般金属内固定物对骨的愈合在影像学和组织学上并没有显著的差别,并且α-氰基丙烯酸酯不会引起皮质骨的吸收,不影响骨折愈合[24-25]。Seo等[26]用氰基丙烯酸正辛酯修复兔耳廓软骨和人鼻软骨,未发现全身或局部不良反应。 临床上在骨折固定方面医用黏合剂主要应用于骨质薄、小骨片多和骨周围有重要组织结构等不适合放置钢板螺钉的部位。Nemoto等[27]对31例眶底骨折患者用2-氰基丙烯酸乙酯进行眶底骨折的重建,除1例出现骨折固定失败再次手术外均取得了较好的疗效。Foresta等[28]用2-氰基丙烯酸正丁酯治疗25例上颌窦前壁粉碎性骨折患者,骨折愈合良好;同时指出黏合剂只能作为骨折固定的辅助治疗,复杂的骨折仍需要手术治疗。α-氰基丙烯酸酯类医用黏合剂黏结强度低,对多孔和粗糙表面填隙性能差,降解缓慢,固化的聚合物水解产生的甲醛具有毒性的缺点[29],在一定程度上限制了其在骨科的应用。 目前,氰基丙烯酸酯类化合物作为骨黏合剂主要存在2大方面的问题需解决:其一是该胶只能黏合不负重部位的小骨块,无法完成对负重部位骨的固定作用,黏度及生物力学的问题是决定骨黏合剂在骨科应用的根本属性;另一个重点问题就是胶在骨折断端的降解速度是否会对骨的生长产生阻碍作用。若胶在体内降解过快,在骨痂生长之前就已降解,这样已被固定的碎骨块会重新脱落,反而会延误治疗,若胶降解过慢,在骨折断面之间就会形成一道屏障,使新生骨痂无法穿透,无法使断骨愈合,造成骨不连。 2.4 氰基丙烯酸酯类化合物的改性研究 利用骨组织工程技术结合黏合剂对胶的改性研究来治疗临床上粉碎性骨折、骨缺损等难题是一项国际前沿的生物技术领域的研究[30]。Li等[31]在α-氰基丙烯酸正丁酯中加入纳米硫酸钙和淫羊藿素,以增强其力学性能和促进骨生长,通过影像学和组织学在兔尺骨骨折模型中观察骨折愈合情况。Brochu等[32]把氰基丙烯酸辛酯嵌入丙烯酸骨水泥,在适度增强力学性能的同时并未增加材料的细胞毒性。Wang等[33]用3D打印技术将α-氰基丙烯酸正丁酯喷涂在羟基磷灰石表面制备人工骨支架以提高黏结性能。 纳米载药系统具有可缓释、控释提高药物生物利用度、靶向性,减轻不良反应等优点,是新药研究的热点。有研究发现,聚α-氰基丙烯酸酯纳米微粒经静脉给药后,被富含网状内皮细胞的肝脾摄取,少量进入骨髓,表现出良好的生物相容性和组织靶向性,可作为一种药物载体[34]。Wohlfart等[35]通过大鼠尾静脉注射聚α-氰基丙烯酸酯正丁酯-多柔比星纳米微粒,研究该制剂对多柔比星分布的影响,发现纳米制剂给药可在大鼠脑内达到药物治疗浓度,提示该纳米制剂可以作为中枢给药的良好载体。将聚α-氰基丙烯酸酯纳米微粒聚乙二醇化后,纳米微粒被单核巨噬细胞摄入量降低,可制备长循环纳米微粒[36]。王新等[37]以α-氰基丙烯酸酯和壳聚糖作为骨形态发生蛋白2的缓释载体注入大鼠下颌骨骨缺损处,观察到生物胶可持续释放骨形态发生蛋白2诱导新骨形成。 近年来,利用α-氰基丙烯酸酯聚合物良好的生物相容性和降解性,以其为载体材料制备载药纳米粒子或微球,进行药物控制释放和在亲水材料表面构筑超疏水多孔薄膜的研究,引起了很大的关注[38-39]。其作为药物载体具有载药量大、可透过血脑屏障、靶向性强等优点,将α-氰基丙烯酸酯物理或化学修饰来结合多肽、核苷酸及不稳定药物等[40],提示新的纳米制剂的研究思路。 临床上骨髓炎、骨结核、骨肿瘤和骨质疏松症引起的骨折和骨缺损等骨科疾病理论上可通过聚α-氰基丙烯酸酯承载抗生素、抗结核药物、抗肿瘤药物、抗骨质疏松药物等不同种类的药物达到靶向治愈的目的,利用其能在体内降解的性能实现药物的缓释,同时诱导新生骨组织的爬行替代。 总之,通过α-氰基丙烯酸酯的黏性强度固定骨折断端的同时能够在局部释放达到有效浓度的药物以促进病理性骨折、骨缺损的愈合。然而聚合后的α-氰基丙烯酸酯碳碳主链在体内尚缺乏有效的降解机制,运用纳米骨组织工程技术进行结构修饰来提升降解性能是目前研究的重点。 "
[1]Singer AJ,Quinn JV,Hollander JE.The cyanoacrylate topical skin adhesives.Am J Emerg Med. 2008;26(4): 490-496. [2]Kim DH,Lee JY,Jeon HJ,et al.Intraoperative Endovascular Embolization of Middle Meningeal Artery and a Pseudoaneurysm by Using N-Butyl 2-Cyanoacrylate for Hemostasis during Operation of Acute Epidural Hemorrhage.Korean J Neurotrauma. 2015;11(2):167-169. [3]Marolt D,Campos IM,Bhumiratana S,et al.Engineering bone tissue from human embryonic stem cells.Proc Natl Acad Sci U S A.2012;109(22):8705-8709. [4]Winslow BD,Shao H,Stewart RJ,et al.Biocompatibility of adhesive complex coacervates modeled after the sandcastle glue of Phragmatopoma californica for craniofacial reconstruction.Biomaterials. 2010;31(36): 9373-9381. [5]Abou Neel EA,Salih V,Revell PA,et al.Viscoelastic and biological performance of low-modulus,reactive calcium phosphate-filled,degradable,polymeric bone adhesives.Acta Biomater.2012;8(1):313-320. [6]Kandalam U,Bouvier AJ,Casas SB,et al.Novel bone adhesives:a comparison of bond strengths in vitro.Int J Oral Maxillofac Surg.2013;42(9):1054-1059. [7]葛茶娜,黎飞猛,李启活,等.α-氰基丙烯酸烷基酯组织胶在骨科应用的研究进展[J].中华创伤骨科杂志, 2015,17(9):826-828. [8]Patel AJ,Price RD.The use of tissue glue in prominentear correction surgery.Aesthetic Plast Surg. 2011;35(2):245-247. [9]Spencker S,Coban N,Koch L,et al.Comparison of skinadhesive and absorbable intracutaneous suture for the implantationof cardiac rhythm devices.Europace. 2011;13(3):416-420. [10]Wachter D,Brückel A,Stein M,et al. 2-Octyl- cyanoacrylate for wound closure in cervical and lumbar spinal surgery.Neurosurg Rev. 2010;33(4):483-489. [11]Storrer CL,Kummer Gdos S,Forcada SM,et al.Use of cyanoacrylate as barrier in guided tissue regeneration in class Ⅱ furcation defects.J Indian Soc Periodontol, 2014;18(3):408-411. [12]雷鸣.医用氰基丙烯酸酯粘合剂在创伤骨科中的研究进展[J].中国矫形外科杂志,2011,19(12):1005-1007. [13]Mudd CD,Boudreau JA,Moed BR.A prospective randomized comparison of two skin closuretechniques in acetabular fracture surgery.J Orthop Traumatol. 2014;15(3):189-194. [14]Saska S,Hochuli-Vieira E,Minarelli-Gaspar AM,et al.Fixationof autogenous bone grafts with ethyl- cyanoacrylate glue ortitanium screws in the calvaria of rabbits.Int J Oral Maxillofac Surg. 2009;38(2):180-186. [15]Won Y,Lee SL,Kim Y,et al.Clinical efficacy of transcatheter embolization of visceral artery pseudoaneurysms using N-butyl cyanoacrylate (NBCA).Diagn Interv Imaging.2015;96(6):563-569. [16]Cardoso M,Torres MF,Lourenco EJ,et al.Dimensional changes in gypsum fragments bonded with cyanoacrylate.J Prosthodont.2011;20(6):470-473. [17]Madhusudhan KS,Gamanagatti S,Garg P,et al.EndovascularEmbolization of Visceral Artery Pseudoaneurysms Using Modified Injection Technique with N-Butyl Cyanoacrylate Glue.J Vasc Interv Radiol. 2015;26(11):1718-1725. [18]Krishna VP,Premalatha A,Babu PJ,et al.Effect of various chemicals on the bond strength of acrylictooth and denture base-An Invitro comparative study.J Int Oral Health.2014;6(1):100-105. [19]Aksoy F,Yilmaz F,Yildirim YS,et al.Use of N-butyl cyanoacrylate in nasal septoplasty:histopathological evaluation using rabbit nasal septum model.J Laryngol Otol.2010;124(7):753-758. [20]Fitzpatrick LE,Chan JW,Sefton MV.On the mechanism of poly(methacrylic acid-co-methyl methacrylate)- induced angiogenesis:gene expression analysis of dTHP-1 cells.Biomaterials.2011;32(34):8957-8967. [21]Esteves JC,Monteiro JM,Aranega AM,et al.Utilization of ethyl cyanocrylate and 2-octyl cyanocrylate adhesives for autogenous bone graft fixation: histomorphometric study in rats.J Oral Implantol. 2014;40(4):411-417. [22]Esteves JC,Borrasca AG,Aranega AM,et al.Histomorphometric analysis of the repair process of autogenous bone grafts fixed at rat calvaria with cyanoacrylate.J Appl Oral Sci.2011;19(5):529-534. [23]Achneck HE,Sileshi B,Jamiolkowski RM,et al.A comprehensive review of topical hemostatic agents: efficacy and recommendations for use.Ann Surg. 2010; 251(2):217-228. [24]Ahn HB,Shin DM,Roh MS,et al.A comparison of 2-octyl cyanoacrylate adhesives versus conventional suture materials for eyelid wound closure in rabbits.Korean J Ophthalmol.2011;25(2):121-127. [25]Akcal MA,Poyanli O,Unay K,et al.Effect of N-butyl cyanoacrylate on fracture healing in segmental rat tibia fracture model.J Orthop Surg Res.2014;9(1):76. [26]Seo JO,Kwon JW,Kin SK,et al.A new nose tip-defining technique for Asians using autologous cartilage prefabricated with octyl-2-cyanoacrylate adhesive.Arch Facial Plast Surg.2010;12(4):252-256. [27]Nemoto H,Ito Y,Kasai Y,et al.Orbital floor reconstruction with ethyl-2-cyanoacrylate.Ann Plast Surg.2015;74(2):195-198. [28]Foresta E,Torroni A,Gasparini G,et al.Use of N-Butyl-2-Cyanoacrylate (Glubran2(®)) in Fractures of Orbital-Maxillo-Zygomatic Complex.J Maxillofac Oral Surg.2015;14(3):761-764. [29]Bae KB,Kim SH,Jung SJ,et al.Cyanoacrylate for colonic anastomosis; is it safe?.Int J Colorectal Dis.2010;25(5):601-606. [30]Wang Y,Wei Q,Pan F,et al.Molecular dynamics simulations for the examination of mechanical properties of hydroxyapatite/poly α-n-butyl cyanoacrylate under additive manufacturing.Biomed Mater Eng.2014;24(1):825-833. [31]Li W, Zhe Zhao Z, Xiong JX,et al.The modificationexperimental study in vivo of nano-bone gelatin.Artif Cells Nanomed Biotechnol. 2014;42(5): 309-315. [32]Brochu AB,Evans GA,Reichert WM.Mechanical and cytotoxicity testing of acrylic bone cement embedded with microencapsulated 2-octyl cyanoacrylate.J Biomed Mater Res B Appl Biomater. 2014;102(1): 181-189. [33]Wang Y,Li X,Wei Q,et al.Study on the Mechanical Properties of Three-Dimensional Directly Binding Hydroxyapatite Powder.Cell Biochem Biophys. 2015; 72(1):1-7. [34]吕国士,许乙凯.新型MR特异性对比剂Gd-聚氰基丙烯酸正丁酯纳米微粒的合成及其肝脏靶向性作用[J].中国组织工程研究与临床康复,2008,12(1):43-46. [35]Wohlfart S,Khalansky AS,Gelperina S,et al.Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier.J Control Release. 2011;154(1): 103-107. [36]Chaudhari KR,Ukawala M,Manjappa AS,et al. Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier.Pharm Res. 2012;29(1): 53-68. [37]王新,谢富强,张贇,等.骨形态发生蛋白-α-氰基丙烯酸复合生物胶修复大鼠下颌骨骨缺损的研究[J].中国组织工程研究,2012,16(43):7986-7990. [38]石淑先,田池,邱杨,等.聚(α-氰基丙烯酸酯)共聚物载药微球的制备及其药物释放研究[J].北京化工大学学报(自然科学版),2015,42(2):59-64. [39]Du X,Li JS,Li LX,et al.Porous poly(2-octyl cyanoacrylate): a facile one-step preparation of superhydrophobiccoatings on different substrates.J Mater Chem A.2013;1(4):1026-1029. [40]何蔚,刘明.氰基丙烯酸酯-纳米药物骨的靶向治疗[J].中国组织工程研究,2013,17(25):4692-4698. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||