Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (42): 6378-6384.doi: 10.3969/j.issn.2095-4344.2016.42.022
Lou Yan-tao
Received:
2016-07-24
Online:
2016-10-14
Published:
2016-10-14
Supported by:
the Key Subject Construction Project of Shenyang Sport University, No. XKFX1511; the General Project of Educational Commission of Guangdong Province, China, No. L2013442; the Project of Liaoning Provincial Federation of Social Science and College Federation of Social Science, No. lslgslhl-158
CLC Number:
Lou Yan-tao. Vibration training improves senile osteoporosis: the assessment of safety and effectiveness[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(42): 6378-6384.
2.1 全身振动对骨骼系统的影响 骨是活组织,需要不断的机械刺激以保持其活性。当施加负荷或“应激”时,骨组织会发生相应的形变[11]。用“应力”来衡量这一形变,这涉及到骨维度的相关改变,如长度、宽度、角度等。 2.1.1 机械负荷应激刺激 关于骨组织对机械负荷适应性反应的研究显示,骨细胞对机械信号非常敏感,其中包括应力的强度及频率,而信号是引起骨组织适应性反应的重要刺激物。日常应激刺激理论阐述了以日常应激刺激的方式施加于骨组织的机械负荷强度,提出了在日常活动中施加于骨组织的循环负荷的大小和次数[12]。此理论提出当日常应激刺激大于某一标准刺激时,就有助于骨质增加;当日常应激刺激小于某一标准刺激时,就会导致骨流失。此理论还提出高频率低强度的刺激足以维持骨质。研究表明,应力的频率是促进骨适应的另一重要因素[13]。 骨骼所能适应的力的强度及速度主要取决于运动的速度、重复的次数、肌活动以及边界条件,例如个体形态、适应水平、行为表现、气候或天气、鞋的样式等。跑步和跳跃时所承载的落地反作用力(GRFs)是体质量的3-6倍[14]。在日常生活活动中,重力、肌力以及落地反作用力均作用于骨骼,并且有助于骨的重建与再生。在青年中,较高的骨密度源于其长期的身体活动,包括跑步及力量训练。另外,已证实高冲击力训练有助于提高女运动员的骨质。 2.1.2 全身振动刺激 全身振动对骨骼的效应类似于身体活动,全身振动激活骨的信号传导并促进成骨作用。控制动态负荷,对成年雌性大鼠施加1-10 Hz不同的频率干扰。结果显示,骨小管的细胞外间隙及骨腔隙中的液体流动增加,且与施加的负荷频率成正相关[15]。液体流动引起细胞膜的切应力激活了骨细胞。经过若干不同的机制,细胞外液的压力会被转变为细胞的反应,这些机制包括激活膜机械感受器、吸附蛋白、细胞骨架信号或细胞外纤维突触。有人提出,利用振动刺激提供适宜的机械负荷,以增加骨中的液体流动,从而促进信号传导[15]。 在身体活动时,肌肉收缩产生的对骨的压力也可引起骨的细胞外间隙的液体流动,从而诱发信号传导,其振动板原理为激活单突触及多突触神经通路,使之产生肌强直性振动反射,类似于肌牵张反射[8]。全身振动也可通过内分泌系统间接影响骨的再建。研究表明,全身振动可以显著改变睾酮和生长激素水平[16]。 2.1.3 全身振动训练现状 目前有垂直振动刺激和变向振动刺激两种训练模式,垂直振动的振动板上各个点的振动方向都相同;变向振动则为两边的振动板方向交替振动,一侧升起的同时,另一侧下降[17]。关于不同振动方向对骨特性影响的研究较少,因此,多方向的振动较单一方向的振动,谁更有益于骨密度尚不清楚。研究表明:分别采用垂直振动和变向振动方法进行每周3次共计12周的训练,垂直振动方法可使溶胶原蛋白1型N肽增加15.2%,变向振动方法可使溶胶原蛋白1型N肽增加20.2%[18]。人体结构是由骨组织、关节软骨、肌肉以及关节液等软组织物质所组成,该结构具有减缓振动频率的作用,研究表明:人体的内脏器官可承受5-20 Hz的振动频率,当振动频率超过70 Hz时将导致肌肉损伤[19]。Giangregorio等[20]进一步指出,全身振动训练在25-45 Hz可提高肌肉力量,增大肌肉的横截面积。 在日常生活活动中的地心引力,可促进骨构建及骨再塑;而全身振动平台所产生的力的效果与重力相同。在一个正负峰间距周期中,加速度随着频率的增加而增加,公式如下: A=2×π2×F2×D A=加速度(单位为mm/s2),F=振动频率(Hz),D=正负峰间距(mm)。因此,若强度为2 mm峰间距,频率为20 Hz,加速度为1.6×g;若强度为2 mm峰间距,频率为60 Hz,加速度为14.5×g [21]。对青年志愿者的研究显示,全身振动训练的强度小于1×g时,可改善骨的特性;但对老年人的结果表明,当强度小于1×g时无显著性改善作用[22]。 关节角度是影响身体对全身振动刺激反应的最后一个因素,因为它影响振动的传递。直立姿势可增强振动在髋、脊柱及头的传递,相反,放松的姿势(如屈膝)可减少传递[23]。由于这些影响振动的因素的相互作用,利用全身振动来维持及提高老年人以及身体、神经损伤者的骨密度的标准化指标尚未建立。对于那些不能承载负荷,不能独立站立的人群,可以通过改良全身振动设备以及与其他康复低频高载手段,例如站立支架、身体悬吊支架等的联合使用达到预期效果。 2.2 全身振动的安全性 考虑到老年人群在应用全身振动训练方法时身体或精神损伤的风险更高,更容易产生不利影响,因此这类人群的安全必须得到保障。垂直和横向交替的全身振动的禁忌证是相同的,设备生产厂家应向食品药品监管局提供全身振动训练的指导方案,以下人群不能参与该项训练,例如肾结石或膀胱结石患者、心率不齐患者、孕妇、癫痫患者、癌症患者、心脏起搏器携带者、未经治疗的体位性低血压患者、近期外科手术人群、严重的血栓或疝气患者、风湿性关节炎患者、心血管疾病患者、糖尿病以及偏头痛患者等[24]。 不是所有的振动都对人体有益处,工厂或车间的高强度或低强度振动引起的全身振动现已被广泛关注,这种全身振动会对人体机能产生很多不良反应,包括神经末梢、血管、关节和感觉机能[25]。这些场所产生的全身振动频率和强度与医疗设备产生的全身振动截然不同。从数量上看,尽管在公开出版物中研究垂直全身振动的文献多于水平全身振动文献,但很少有文献分析全身振动给人体带来的负面影响或不良反应。在全身振动领域的研究中,究竟是不会产生不良反应还是不良反应的影响被淡化,就不得而知了。因此,在以后的研究中,全身振动的研究应该既有系统、完善的记录,又有不良反应的数据。多伦多康复研究所林德赫斯特研究中心的一项临床试验表明,全身振动所引发的一些不良反应例如疼痛、自主神经反射异常和头晕等现象,究其原因很大程度缘于被动站立干预。 2.3 全身振动的前沿研究 国外有研究表明,适当强度和频率的振动刺激,可以对抗骨质流失[26-27]。动物实验利用相对较低的振动强度,观察全身振动的效果。研究结果表明,采用加速度的强度小于正常行走的加速度(0.3×g)[28],可见高频振动(25-45 Hz)主要促进肌骨骼系统的合成及新陈代谢。动物全身振动实验表明,骨骼细胞对低强度、高频率的刺激反应敏感。宇航员因为长时间在微重力环境的空间站,所以经常出现骨流失和肌肉萎缩现象,与常年坐车的人群相比,宇航员出现骨流失和肌肉萎缩的情况更明显且骨流失速度是地球环境的10倍[8]。Ozcivici等[29]通过对6个月长期处于太空的宇航员进行每天高强度的全身振动训练,结果表明采用振动训练组的宇航员骨密度未出现显著性差异,而未采用振动训练组的宇航员骨密度显著性降低。另一项试验对患有糖尿病的骨质疏松人群进行为期8周,每周训练3 d的全身振动训练,采用振动强度为0.3×g,振动频率为30 Hz的研究结果表明,训练后骨松质和骨密质均显著性提高,分别增加了6.2%和2.1%[30]。 Hatori等[31]通过不同振动强度对绝经女性骨质进行研究,发现30 min/d,3次/周、持续28周的振动强度可显著性增加骨密度,而同样方案在低于该强度时对骨密度无影响。Bradney等[32]对非体育院校学生进行全身振动干预试验,随机挑选了20名男学生,每周安排了3次0.5 h的负重运动,持续8个月,另外选择了20名年龄、坐高、身高、体质量、基线骨密度量等因素配对而成对照组。结果显示,干预组骨密度增加量是对照组的2倍,这说明在一定的强度下每次半小时的振动训练对骨密度的增加有利。Delecluse等[33]对老年人采用振动训练后提出,高频(20-90 Hz)低载(小于0.3×g)的垂直全身性振动载荷可以促进骨形成和抑制骨吸收,并且生产出专用仪器。Kvorning等[34]报道训练3个月后的49-59岁的办公室雇员的桡骨远端、肱骨头和跟骨的骨矿含量无明显变化,说明短期锻炼对骨量影响不大。Ward等[35]对55-70岁妇女进行22个月的运动训练,腰椎骨密度增加,停训13个月后又明显下降,说明不长期坚持的运动不利于维持骨量。 全身振动对老年人骨骼促进的影响目前尚不明确,Kozlovskaya等[36]分别对老年人采用为期6个月(0.1-10 Hz,12-28 Hz),12个月(20 Hz),12个月(小于0.3×g,30 Hz)的振动训练,结果显示,对绝经后妇女骨质改善并无帮助。还有一些研究表明,全身振动试验对预防骨密度降低,或对患有骨质疏松症人群骨密度提高有帮助。运用纵向的全身振动试验[6个月,(2.28-5.09)×g,35-40 Hz]结果显示髋骨的骨密度有0.93%的增加[37]。通过随机的临床试验,新近的观点认为全身振动刺激可以有效减少绝经女性髋骨骨密度下降。与这一结果类似的,有一项身体活动对骨密度影响研究表明,适当的运动和慢走练习可以抑制骨的重吸收,因此可以维持绝经后女性腰椎骨密度[38]。 总体看来,大量动物和人体研究证明,应用全身振动的方法对抗骨流失已经取得不错的效果,全身振动训练方法可以促进骨骼的应力分布,使骨细胞不断加快吸收并进行骨化,从而加速骨钙的吸收,有效增强骨密度。 2.4 研究的局限性 全身振动试验具有一定的局限性,由于振动方向、振动参数范围的选择、每次试验时间长短,试验周期长短,试验的频繁程度,试验低频高载型号/品牌的不同,试验对象的体质、健康程度等因素的不同,导致的实验结果也不仅相同。另外,少部分试验目的为治疗性分析,因此试验结果可能被过高地评价。研究方式的不同,也不应被忽略,不同的试验方式会限制试验结果的推广性。 动物实验证明全身振动实验可以模拟动力传导,并引起骨骼适应性反应。尽管结果显示,全身振动实验能够对骨密度有积极影响,但实验效果可能来自于成年人对骨流失的预防措施。另外,目前的全身振动试验无论在试验结果,还是对应训练方法和手段上都有其局限性。如果全身振动试验参数设置或者试验对象选择不当,都可能造成机体损伤或产生不良反应,全身振动试验参数的设置与选择必须考虑安全性与有效性。"
[1] 刘忠厚.骨质疏松学[M].北京:科学出版社,1998:529-532. [2] Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int. 1994;4(2):72-75. [3] 宫元章次.成长期规律性运动对大学生骨密度的影响[J].体育科学,1993,42(1):37-45. [4] 刘忠厚,杨定焯,朱汉民,等.中国人骨质疏松症建议诊断标准[J].中国骨质疏松杂志,2000,6(1):13-16. [5] 周士枋.骨质疏松症的康复治疗[J].中国临床康复, 1999, 3(8):898-901. [6] 周丽萍,刘新,王智红,等.运动对绝经后妇女骨量和骨代谢影响情况分析[J].中国妇幼保健,2007,22(3):394-396. [7] 郑锦畅,陈建庭,裴卫卫.复合振动仪治疗骨质疏松对骨代谢影响的临床观察[J].中国老年学杂志,2009,29(20): 2561-2563. [8] 丁华,付彦铭,程杨,等.全身振动与骨质疏松症[J].沈阳体育学院学报,2013,32(1):139-140. [9] Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64(3):175-188. [10] Rubin C, Turner AS, Mallinckrodt C, et al. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone. 2002;30(3):445-452. [11] Krall EA, Dawson-Hughes B. Walking is related to bone density and rates of bone loss. Am J Med. 1994; 96(1):20-26. [12] Rubin CT, Sommerfeldt DW, Judex S, et al. Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli. Drug Discov Today. 2001;6(16):848-858. [13] Gutin B, Kasper MJ. Can vigorous exercise play a role in osteoporosis prevention? A review. Osteoporos Int. 1992;2(2):55-69. [14] 唐婕,陈佩杰,孙风华.健身锻炼对老年男性跟骨骨密度和性激素影响的追踪观察[J].中国运动医学杂志, 2004, 23(2):187-189. [15] 何成奇,肖登,王维.不同强度脉冲电磁场对去势大鼠股骨骨钙含量的影响[J].中国康复医学杂志.2007,22(3):215-217. [16] 石见佳子.骨代谢と运动[J].体育の科学,2004,54(1):38-42. [17] Dalsky GP, Stocke KS, Ehsani AA, et al. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women.Ann Intern Med. 1988;108(6):824-828. [18] Düppe H, Gärdsell P, Johnell O, et al. Bone mineral density in female junior, senior and former football players. Osteoporos Int. 1996;6(6):437-441. [19] LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2): 157-160. [20] Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med. 2006;29(5):489-500. [21] Harvey N, Earl S,Cooper C. Epidemiology of osteoporotic fractures//Favus MJ. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington(DC): American Society for Bone and Mineral Research, 2006:244-248. [22] Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67(1):10-18. [23] Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord. 2006;7:92. [24] 张林,杨锡让,薛延.运动与人体骨密度变化研究进展[J].北京体育大学学报,2000,23(1):64-66. [25] Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc. 2008;56(5):935-941. [26] Rubin C, Turner AS, Mallinckrodt C, et al. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone. 2002;30(3):445-452. [27] Gilsanz V, Wren TA, Sanchez M, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464-1474. [28] Miyakoshi N. Daily practice using the guidelines for prevention and treatment of osteoporosis. Effectiveness of exercise for preventing and treating osteoporosis.Clin Calcium. 2008;18(8):1162-1168. [29] Ozcivici E, Garman R, Judex S. High-frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. J Biomech. 2007;40(15):3404-3411. [30] Garman R, Gaudette G, Donahue LR, et al. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J Orthop Res. 2007;25(6):732-740. [31] Hatori M, Hasegawa A, Adachi H, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int. 1993;52(6):411-414. [32] Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13(12):1814-1821. [33] Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003; 35(6):1033-1041. [34] Kvorning T, Bagger M, Caserotti P, et al. Effects of vibration and resistance training on neuromuscular and hormonal measures. Eur J Appl Physiol. 2006;96(5): 615-625. [35] Ward K, Alsop C, Caulton J, et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19(3):360-369. [36] Kozlovskaya IB. Countermeasures for long-term space flights, lessons learned from the Russian space program. J Gravit Physiol. 2002;9(1):P313-317. [37] Goodship AE, Cunningham JL, Oganov V, et al. Bone loss during long term space flight is prevented by the application of a short term impulsive mechanical stimulus. Acta Astronaut. 1998;43(3-6):65-75. [38] Gilsanz V, Wren TA, Sanchez M, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res. 2006;21(9):1464-1474. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Tang Hui, Yao Zhihao, Luo Daowen, Peng Shuanglin, Yang Shuanglin, Wang Lang, Xiao Jingang. High fat and high sugar diet combined with streptozotocin to establish a rat model of type 2 diabetic osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1207-1211. |
[3] | Li Zhongfeng, Chen Minghai, Fan Yinuo, Wei Qiushi, He Wei, Chen Zhenqiu. Mechanism of Yougui Yin for steroid-induced femoral head necrosis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1256-1263. |
[4] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[5] | Hou Guangyuan, Zhang Jixue, Zhang Zhijun, Meng Xianghui, Duan Wen, Gao Weilu. Bone cement pedicle screw fixation and fusion in the treatment of degenerative spinal disease with osteoporosis: one-year follow-up [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 878-883. |
[6] | Li Shibin, Lai Yu, Zhou Yi, Liao Jianzhao, Zhang Xiaoyun, Zhang Xuan. Pathogenesis of hormonal osteonecrosis of the femoral head and the target effect of related signaling pathways [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 935-941. |
[7] | Xiao Fangjun, Chen Shudong, Luan Jiyao, Hou Yu, He Kun, Lin Dingkun. An insight into the mechanism of Salvia miltiorrhiza intervention on osteoporosis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 772-778. |
[8] | Liu Bo, Chen Xianghe, Yang Kang, Yu Huilin, Lu Pengcheng. Mechanism of DNA methylation in exercise intervention for osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 791-797. |
[9] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[10] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[11] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[12] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[13] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[14] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[15] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||