Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (37): 5580-5587.doi: 10.3969/j.issn.2095-4344.2016.37.016
Previous Articles Next Articles
Li Dan1, Guo Xing1, Tan Mei-yun2
Online:
2016-09-09
Published:
2016-09-09
Contact:
Guo Xing, Associate chief physician, Master’s supervisor, Department of Burn and Plastic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
About author:
Li Dan, Studying for master’s degree, Department of Burn and Plastic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
Supported by:
the National Natural Science Foundation of China, No. 31271049
CLC Number:
Li Dan, Guo Xing, Tan Mei-yun. Role of Mkx (Mohawk) in tendon tissue engineering[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(37): 5580-5587.
2.1 Mkx的结构、分布和功能 2.1.1 Mkx的结构 kx(Mohawk)又称为Irxl(Iroquois home0box-like,Irxl)[18],是三氨基环酸(three- amino-acid loop,TALE)超家族的成员之一。Mkx是肌腱发育过程中肌腱细胞所表达的非典型的同源异型盒基因,在许多组织器官发育过程中都是必要的,包括细胞的增殖、分化等过程[19-23]。Mkx具有转录抑制活性[24-25],且包括了3个小阻遏域。Mkx作为一个转录抑制因子,是通过招募Sin3A /DHAC抑制复合物而发挥作用的[24]。Mkx基因可编码353个氨基酸,它在多种中胚层来源的组织细胞中表达。Irxl1与Iroquois家族基因最相似,但在所有的Irx基因中缺乏典型的IRO盒[26-27]。在许多脊椎动物和无脊椎动物物种中均发现了Mkx,Mkx与脊椎动物同源基因含有同源结构域的同源性为100%[28]。 2.1.2 Mkx的分布与功能 Mkx在肌肉骨骼系统、肌肉、软骨、骨及肌腱中均有表达[26-27]。Mkx基因突变小鼠并没有出现明显的软骨、骨或骨骼肌的缺失,反而肌腱发生了严重发育不全[18,29-30]。Mkx-缺失的肌腱I型胶原生成减少,而细胞数目未发生改变。所以,Mkx基因的正常表达是轴向和四肢肌腱的形态和功能保持完整的必需条件。 研究发现,体节的生骨节的肌腱祖细胞于E9.5 d出现Scleraxis(Scx),而在E12.5 d开始出现Mkx,Mkx的表达量较少,而肌腱祖细胞从聚集到分化(E13.5 d- E14.5 d)发现Mkx的表达量明显变多。然而,在出生以后Mkx的表达量明显比胚胎期减少。令人意外的是,Mkx在其四肢及尾部的肌腱鞘中表达量却相对较高[18,30]。最近研究也得出相似结果,分别从胚胎期的整个胚胎、前肢及后肢中提取Mkx,从E10.5 d至E13.5 d发现其在前肢和后肢的肌腱祖细胞中Mkx的表达呈现稳定增长的趋势,而在大鼠出生后4-14 d期间跟腱中的Mkx呈高度表达[17]。由此可以看出,Mkx在肌腱祖细胞的分化过程发挥重要作用,且Mkx参与肢体和肌腱发育的特定阶段。为研究Mkx在体内的功能,Ito等[29]运用了Mkx-/-小鼠进行试验,研究发现小鼠体内形成了发育不全的肌腱,且在这些肌腱中Ⅰ型胶原的表达下调、胶原纤维直径变小。在Mkx基因过表达实验组中发现其肌腱胶原沉积更多、分化更成熟、平均直径更大、直径范围更广,且其力学性能更好[17]。因此,可看出Mkx基因在肌腱的发育过程中是不可或缺的部分,且是肌腱维持其弹性的重要成分。 Onizuka等[31]通过对基因靶向作用的小鼠的研究发现Mkx不仅可调节肌腱分化,而且对腱周组织掌板的发育和平衡也起着重要作用。掌板有胶原纤维束的具体定位,研究者认为其能够抵抗过伸和扭转应变产生的紧张[32]。Onizuka等[31]研究结果发现,在Mkx-裸鼠的掌板中发现杂乱无章排列的纤维,且掌板过伸和侧扭应变时容易受伤,从而引起指骨背侧脱位或大关节不稳。掌板示意图见图2。"
[1] Su B, O'Connor JP. Nsaid therapy effects on healing of bone, tendon, and the enthesis. J Appl Physiol (1985). 2013;115(6):892-899. [2] Mehallo CJ,Drezner JA,Bytomski JR.Practical management: Nonsteroidal antiinflammatory drug (nsaid) use in athletic injuries. Clin J Sport Med. 2006; 16(2):170-174. [3] Mayer F, Hirschmuller A, Muller S, et al. Effects of short-term treatment strategies over 4 weeks in achilles tendinopathy. Br J Sports Med. 2007;41(7):e6. [4] Andres BM, Murrell GA. Treatment of tendinopathy: what works, what does not, and what is on the horizon.. Clin Orthop Relat Res. 2008;466(7):1539-1554. [5] Fu SC, Hung LK, Shum WT, et al.In vivo low-intensity pulsed ultrasound (lipus) following tendon injury promotes repair during granulation but suppresses decorin and biglycan expression during remodeling. J Orthop Sports Phys Ther. 2010;40(7):422-429. [6] Lovric V, Ledger M, Goldberg J,et al.The effects of low-intensity pulsed ultrasound on tendon-bone healing in a transosseous-equivalent sheep rotator cuff model. Knee Surg Sports Traumatol Arthrosc. 2013; 21(2):466-475. [7] Selfe J, Alexander J, Costello JT, et al. The effect of three different (-135 degrees c) whole body cryotherapy exposure durations on elite rugby league players. PloS one.2014;9(1):e86420. [8] Hausswirth C, Louis J, Bieuzen F, et al. Effects of whole-body cryotherapy vs. Far-infrared vs. Passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PloS one.2011;6(12): e27749. [9] Ni M, Rui YF, Tan Q,et al.Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials.2013;34(8):2024-2037. [10] Chen JL,Yin Z,Shen WL, et al. Efficacy of hesc-mscs in knitted silk-collagen scaffold for tendon tissue engineering and their roles.Biomaterials.2010;31(36):9438-9451. [11] Conze P, van Schie HT, van Weeren R, et al.Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions. Regenerative medicine.2014;9(6):743-757. [12] Geburek F,Mundle K,Conrad S,et al.Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions - a pilot study. Stem Cell Res Ther. 2016;7:21. [13] Otabe K, Nakahara H, Hasegawa A, et al. Transcription factor mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res. 2015;33(1):1-8. [14] Jiang D, Gao P, Zhang Y, et al. Combined effects of engineered tendon matrix and gdf-6 on bone marrow mesenchymal stem cell-based tendon regeneration. Biotechnology letters.Biotechnol Lett. 2016 ;38(5):885-892. [15] Huang TF, Yew TL, Chiang ER, et al.Mesenchymal stem cells from a hypoxic culture improve and engraft achilles tendon repair. Am J Sports Med. 2013;41(5): 1117-1125. [16] Moshaverinia A, Xu X, Chen C, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials.2014;35(9):2642-2650. [17] Liu H, Zhang C, Zhu S, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the tgfbeta signaling pathway. Stem cells (Dayton, Ohio).2015;33(2):443-455. [18] Liu W, Watson SS, Lan Y, et al.The atypical homeodomain transcription factor mohawk controls tendon morphogenesis.Molecular and cellular biology. 2010;30(20):4797-4807. [19] Selleri L,Depew MJ,Jacobs Y,et al.Requirement for pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development (Cambridge, England).2001;128(18): 3543-3557. [20] Brendolan A,Ferretti E,Salsi V,et al.A pbx1-dependent genetic and transcriptional network regulates spleen ontogeny.Development (Cambridge, England). 2005; 132(13):3113-3126. [21] Moens CB,Selleri L.Hox cofactors in vertebrate development. Developmental biology.2006;291(2): 193-206. [22] van Tuyl M,Liu J, Groenman F, et al. Iroquois genes influence proximo-distal morphogenesis during rat lung development. Am J Physiol Lung Cell Mol Physiol. 2006;290(4):L777-L789. [23] diIorio P,Alexa K,Choe SK, et al. Tale-family homeodomain proteins regulate endodermal sonic hedgehog expression and pattern the anterior endoderm. Developmental biology.2007;304(1):221-231. [24] Anderson DM,Beres BJ,Wilson-Rawls J,et al.The homeobox gene mohawk represses transcription by recruiting the sin3a/hdac co-repressor complex. Dev Dyn. 2009;238(3):572-580. [25] Bilioni A, Craig G, Hill C, et al. Iroquois transcription factors recognize a unique motif to mediate transcriptional repression in vivo.Proc Natl Acad Sci U S A. 2005;102(41):14671-14676. [26] Anderson DM, Arredondo J, Hahn K, et al. Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dyn. 2006;235(3):792-801. [27] Liu H, Liu W, Maltby KM, et al. Identification and developmental expression analysis of a novel homeobox gene closely linked to the mouse twirler mutation. Gene expression patterns: GEP.2006;6(6):632-636. [28] Chuang HN, Cheng HY, Hsiao KM, et al. The zebrafish homeobox gene irxl1 is required for brain and pharyngeal arch morphogenesis. Dev Dyn. 2010; 239(2): 639-650. [29] Ito Y, Toriuchi N, Yoshitaka T, et al. The mohawk homeobox gene is a critical regulator of tendon differentiation.Proc Natl Acad Sci USA. 2010;107(23): 10538-10542. [30] Kimura W, Machii M, Xue X, et al. Irxl1 mutant mice show reduced tendon differentiation and no patterning defects in musculoskeletal system development [J]. Genesis (New York, NY : 2000). 2011;49(1):2-9. [31] Onizuka N, Ito Y, Inagawa M, et al. The mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates.J Orthop Sci. 2014;19(1):172-180. [32] Williams EH, McCarthy E, Bickel KD. The histologic anatomy of the volar plate. J Hand Surg Am. 1998; 23(5):805-810. [33] Anderson DM, George R, Noyes MB, et al. Characterization of the DNA-binding properties of the mohawk homeobox transcription factor.J Biol Chem. 2012;287(42):35351-35359. [34] Katzel EB, Wolenski M, Loiselle AE, et al. Impact of smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res. 2011; 29(5):684-693. [35] Berthet E, Chen C, Butcher K, et al. Smad3 binds scleraxis and mohawk and regulates tendon matrix organization. J Orthop Res. 2013;31(9):1475-1483. [36] Guerquin MJ, Charvet B, Nourissat G,et al. Transcription factor egr1 directs tendon differentiation and promotes tendon repair. J Clin Invest. 2013;123(8): 3564-3576. [37] Kayama T, Mori M, Ito Y, et al. Gtf2ird1-dependent mohawk (mkx) expression regulates mechanosensing properties of tendon. Mol Cell Biol. 2016;36(8):1297-309. [38] Guo J,Chan KM,Zhang JF,et al. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res. 2016;341(1):1-7. [39] Dunkman AA, Buckley MR, Mienaltowski MJ, et al. The tendon injury response is influenced by decorin and biglycan. Ann Biomed Eng. 2014;42(3):619-630. [40] Ansorge HL, Hsu JE, Edelstein L, et al.Recapitulation of the achilles tendon mechanical properties during neonatal development: A study of differential healing during two stages of development in a mouse model. J Orthop Res. 2012;30(3):448-456. [41] Alberton P, Dex S, Popov C, et al. Loss of tenomodulin results in reduced self-renewal and augmented senescence of tendon stem/progenitor cells. Stem Cells Dev. 2015;24(5):597-609. [42] Lee JY, Zhou Z, Taub PJ, et al. Bmp-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PloS one.2011;6(3):e17531. [43] Violini S, Ramelli P, Pisani LF, et al. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to bmp-12. BMC Cell Biol. 2009;10:29. [44] Shen H,Gelberman RH,Silva MJ,et al.Bmp12 induces tenogenic differentiation of adipose-derived stromal cells. PloS one.2013;8(10):e77613. [45] Mohanty N, Gulati BR, Kumar R, et al. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood. In vitro cellular & developmental biology Animal, 2014;50(6):538-548. [46] Dong Y, Zhang Q, Li Y, et al. Enhancement of tendon-bone healing for anterior cruciate ligament (acl) reconstruction using bone marrow-derived mesenchymal stem cells infected with bmp-2. nt J Mol Sci.2012;13(10):13605-13620. [47] Schwarting T, Schenk D, Frink M, et al.Stimulation with bone morphogenetic protein-2 (bmp-2) enhances bone-tendon integration in vitro. Connect Tissue Res. 2016;57(2):99-112. [48] Branford OA, Klass BR, Grobbelaar AO, et al.The growth factors involved in flexor tendon repair and adhesion formation.J Hand Surg Eur Vol. 2014;39(1): 60-70. [49] Qiu Y,Wang X,Zhang Y,et al.Development of a refined tenocyte differentiation culture technique for tendon tissue engineering. Cells tissues organs.2013;197(1):27-36. [50] Farhat YM, Al-Maliki AA, Chen T, et al. Gene expression analysis of the pleiotropic effects of tgf-beta1 in an in vitro model of flexor tendon healing. PloS one.2012;7(12):e51411. [51] Shinkai Y, Tachibana M. H3k9 methyltransferase g9a and the related molecule glp. Genes Dev.2011;25(8): 781-788. [52] Tachibana M,Sugimoto K,Nozaki M, et al. G9a histone methyltransferase plays a dominant role in euchromatic histone h3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.2002; 16(14):1779-1791. [53] Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases g9a and glp form heteromeric complexes and are both crucial for methylation of euchromatin at h3-k9. Genes Dev. 2005;19(7):815--826. [54] Tachibana M,Nozaki M,Takeda N,et al.Functional dynamics of h3k9 methylation during meiotic prophase progression. EMBO J. 2007;26(14):3346-3359. [55] Wada S,Ideno H,Shimada A,et al.H3k9mtase g9a is essential for the differentiation and growth of tenocytes in vitro. Histochem Cell Biol. 2015;144(1):13-20. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Zhang Xiumei, Zhai Yunkai, Zhao Jie, Zhao Meng. Research hotspots of organoid models in recent 10 years: a search in domestic and foreign databases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1249-1255. |
[4] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[5] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[6] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[7] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[8] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[9] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[10] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[11] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[12] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[13] | Guan Qian, Luan Zuo, Ye Dou, Yang Yinxiang, Wang Zhaoyan, Wang Qian, Yao Ruiqin. Morphological changes in human oligodendrocyte progenitor cells during passage [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1045-1049. |
[14] | Wang Zhengdong, Huang Na, Chen Jingxian, Zheng Zuobing, Hu Xinyu, Li Mei, Su Xiao, Su Xuesen, Yan Nan. Inhibitory effects of sodium butyrate on microglial activation and expression of inflammatory factors induced by fluorosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1075-1080. |
[15] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||