Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (21): 3185-3192.doi: 10.3969/j.issn.2095-4344.2016.21.021
Kang Dong
Received:
2016-03-16
Online:
2016-05-20
Published:
2016-05-20
About author:
Kang Dong, Master, Lecturer, Department of Physical Education of Chang’ an University, Xi’ an 710064, Shaanxi Province, China
Supported by:
Humanities and Social Science Foundation of Chang’an University, No. 0916
CLC Number:
Kang Dong . Anti-adhesion effect of absorbable biomaterials during tendon reconstruction[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(21): 3185-3192.
2.1 聚乳酸可吸收防粘连材料 根据不同的临床资料统计,肌腱修复的粘连率为25%-30%[13]。因此在不影响肌腱愈合的前提下,减少粘连,恢复其功能显得尤为重要。随着分子生物及材料科学的发展,国内外学者对此进行了大量的临床与实验研究,临床可供选择的可吸收医用防粘连材料也越来越多[14-16]。目前临床上可吸收医用防粘连材料主要有透明质酸、聚乳酸、胶原蛋白、纤维蛋白胶等,它们在国内外临床应用上得到普遍认可,研究人员对它们预防运动性肌腱损伤后粘连的效果进行了广泛应用研究[17]。 聚乳酸及其共聚物是由生物发酵生产的乳酸经化学合成而得的聚合物,具有良好的物理和化学性能,保持着良好的生物相容性和生物可降解性[18]。通过对分子质量的控制、共聚体的配比调节,使产品得到适当的强度和适宜的降解速率。由聚乳酸制成的可吸收医用防粘连材料,能在预期的时间内降解为二氧化碳和水[19]。在外科治疗中,利用聚乳酸及其共聚物良好的物理屏障作用,隔离在创面与周围组织之间,使得创面渗出的纤维蛋白及增生的肉芽组织不能与周围其他组织接触,以预防术后粘连的发生,并起到一定的组织支撑和桥接作用。聚乳酸在体液的作用下,聚合物发生化学反应,使共聚链断裂,材料的机械强度减弱;聚乳酸可自身降解,无需酶参与降解,水解作用进一步将长链变成短链,材料的机械强度随之不断减弱,最终形成二氧化碳和水排除体外,在体内无残留。目前在体外实验中,已证实了与其他防粘连材料比较,聚乳酸及其共聚物具有直接作用于需防粘连创面、遇水成膜、贴附性好、降解时间设计合理、防粘连效果确切、临床应用安全性高的优势[20]。 刘宇洲等[21]探讨鸡肌腱断裂修补后,聚-DL-乳酸可吸收膜预防肌腱粘连的可行性及有效性,将100只实验用鸡随机分为2组,对每只鸡的左足趾总深屈肌腱进行断裂修补,聚-DL-乳酸可吸收膜组修补后放置可吸收膜,对照组修补后不放置可吸收膜,修补后3周、6周、2个月、3个月、5个月分别进行大体观察、组织形态学、生物力学及功能恢复的测定,大体观察下聚-DL-乳酸可吸收膜组同周围组织粘连较少,生物力学结果无明显差异,3个月后聚-DL-乳酸可吸收膜组的屈趾功能明显优于对照组,说明聚-DL-乳酸可吸收医用膜是一种较为理想的防肌腱粘连的生物材料。路来金等[22]研究鹿茸多肽-聚羟基乙酸/聚乳酸复合膜对肌腱愈合和粘连的影响,将健康家鸡48只随机分成4组,将家鸡第2、3、4趾Ⅱ区趾浅屈肌腱切除,对照组单纯修复鞘管,聚羟基乙酸/聚乳酸复合膜组应用聚羟基乙酸/聚乳酸复合膜包绕吻合口后修复鞘管,低剂量聚羟基乙酸/聚乳酸复合膜组应用3 mg/g的鹿茸多肽-聚羟基乙酸/聚乳酸复合膜包绕吻合口后修复鞘管,高剂量聚羟基乙酸/聚乳酸复合膜组应用15 mg/g的鹿茸多肽-聚羟基乙酸/聚乳酸复合膜包绕吻合口后修复鞘管,石膏固定跖趾关节及趾间关节于屈曲位,术后2,3,4周取材,分别进行大体观察、组织学检查和生物力学测定。结果显示,4组肌腱除对照组外,粘连程度无明显差异,低剂量和高剂量聚羟基乙酸/聚乳酸复合膜组大体观察、组织学检查和生物力学检查均优于对照组和聚羟基乙酸/聚乳酸复合膜组,组织学检查高剂量聚羟基乙酸/聚乳酸复合膜组优于低剂量组,但大体观察和生物学测定无明显差异,研究结果证实鹿茸多肽-聚羟基乙酸/聚乳酸复合膜是一种良好的减轻肌腱术后粘连、促进肌腱愈合的可降解材料。 刘毅等[23]通过临床随机对照研究探讨可吸收医用膜预防外伤屈指肌腱重建后粘连的临床效果,将42例急性手部屈伸肌键损伤患者分为试验组和对照组,试验组(n=20)用聚-DL-乳酸可吸收医用膜包绕肌腱缝合端;对照组(n=22)不使用可吸收性医用膜,对损伤肌腱均采用5-0肌腱缝线行改良 Kessler法修复,观察两组的治疗效果。结果显示,随访6-11个月,可吸收医用膜可用于外伤屈指肌腱重建后粘连中的应用,具有防止或减轻外伤屈指肌腱重建后粘连的作用。王继宏等[24]探讨医用可吸收防粘连膜促进Ⅱ区屈指肌腱愈合与减少肌腱粘连的临床效果,将Ⅱ区屈指肌腱损伤修复后的67例患者80指随机分为两组,其中一组为防粘连膜组(试验组,33例,共39指),修复中肌腱吻合完成后,肌腱断端包以医用可吸收防粘连膜;另一组为无防粘连膜组(对照组,34例,共41指),重建中修复屈肌腱后直接缝合皮肤。在修复后12周,采用肌腱总主动活动度评定标准评价肌腱的功能状况。结果显示,两组术后无肌腱再断裂病例出现,在术后12周时,根据肌腱总主动活动度系统评定标准,试验组与对照组的优良率分别为94.9%和70.7%,组间优良率比较差异有显著性意义,试验组显著高于对照组。研究说明医用可吸收膜具有促进Ⅱ区屈指肌腱愈合的效果,可有效防止修复后肌腱粘连,改善患指主动活动功能。 贺小虎等[25]探讨在屈肌腱损伤修复后应用和不应用聚乳酸-聚羟乙酸/磷酸三钙薄膜包裹两种情况下,修复后不同时期屈肌腱的粘连情况和聚乳酸-聚羟乙酸/磷酸三钙在肌腱愈合过程中的作用。按聚乳酸-聚羟乙酸浓度(150 g/L),磷酸三钙/聚乳酸-聚羟乙酸质量比(20/15)配制的电纺溶液,加入自动电纺仪中,制备出聚乳酸-聚羟乙酸/磷酸三钙纳米纤维薄膜。选取健康成熟的三黄鸡50只,在右足2、3趾趾深屈肌腱Ⅰ区将其横断,用改良Kessler法修复断裂的肌腱作为肌腱粘连的动物模型,选取右足第2趾为实验趾,第3趾为对照趾。结果显示,聚乳酸-聚羟乙酸/磷酸三钙薄膜可在动物体内降解,可提高受损修复后肌腱的滑动度,及肌腱愈合后期的抗张力强度。聚乳酸-聚羟乙酸/磷酸三钙薄膜可以减轻肌腱粘连的产生,又不影响肌腱的正常愈合,是一种理想的预防肌腱粘连的材料。 2.2 可吸收水凝胶类防粘连材料 可吸收水凝胶类防粘连材料具有屏障、止血、抑制胶原产生和炎症反应的作用,主要包括透明质酸、几丁糖、高分子纤维素、医用生物蛋白胶等[26]。此外,高分子纤维素、水凝胶密封剂、磷脂聚合物凝胶等也被应用于肌腱粘连的研究,并发现其具有良好通透性及组织相容性,可有效减轻肌腱粘连。虽然透明质酸、几丁糖是较为理想的防粘连物质,但其有降解时间不易控制等缺点,因此目前仍没有一种防止肌腱粘连的理想材料[27]。 2.2.1 透明质酸及其衍生物 透明质酸为一种天然的高分子直链多糖,其本身是结缔组织基质和腱鞘滑液的重要成分之一,广泛分布在动物和人体组织及细胞外基质中,起流体阻隔作用和分子筛效应[28]。大量资料表明,人工合成的透明质酸作为一种可吸收的高分子生物医用材料,能加强肌键营养物质的渗透,同时又能可调控炎症介质,参与伤口愈合,有助于减轻损伤后炎症反应,还能附着在肌腔周围形成一层隔膜,阻碍了外源性组织细胞靠近肌腔,起到防止重建后肌键粘连和促进肌腔愈合作用[29]。近年来研究发现,经过修饰和交联后得到的透明质酸衍生物可弥补天然的透明质酸在组织中易被降解和扩散,在体内存留时间短这一缺陷[30]。杨成林等[31]将透明质酸运用于临床屈肌腱损伤研究,发现应用透明质酸的实验组肌腱损伤修复优良率明显高于对照组。 透明质酸交联的衍生物不仅具有更好的流变性能、延长其在生物体内的存留时间,而且仍保持良好的生物相容性和生物降解优势,更好地起到防粘连作用[32]。透明质酸衍生物Seprafilm防粘连薄膜是一种可吸收、透明的防粘连屏障材料,由2个阴离子聚多醣、透明质酸和羧甲基纤维素构成。左强等[33]将18只白兔随机分为4组,分别为Seprafilm防粘连薄膜组、聚乳酸可吸收防粘连膜组、透明质酸凝胶组、对照组,结果表明透明质酸衍生物Seprafilm防粘连薄膜可防止兔急性肌腱损伤后的肌腱粘连,并能改善关节功能。相对于天然透明质酸,Seprafilm具有更密集的网状结构和较长的体内存留时间等优点,但其水解时强度差,容易破裂,不易包绕肌腱,往往在肌腱修复之前就已降解,且止血效果欠佳。也有报道应用一种透明质酸衍生物凝胶膜CarbylanTM-SX可减轻肌腱粘连,效果较Seprafilm理想[34]。 透明质酸及其衍生物在肌腱修复后抑制组织粘连中的应用已得到了广泛重视,其良好的应用效果在国内外大量临床实践中得到了证实,操作方法简单,使用安全,具有快速见效特点,可用于人体任何部位,无排异反应,在损伤部位使用透明质酸溶液都可有效的防止或减轻重建后肌腱粘连的程度[35]。何伟华等[36]研究局部使用透明质酸钠对肌腱断裂修复后疗效的影响,对53例肌腱断裂患者,根据术后是否局部使用透明质酸钠分为对照组和治疗组,修复后随访按照Arner-Lindholm的疗效标准评定疗效,并测量患侧踝关节较健侧活动度减小度数,对两组间进行比较。结果显示,治疗组疗效明显优于对照组,且踝关节活动度丧失明显小于对照组,因此,认为局部使用透明质酸钠可有效预防肌腱修复后粘连,提高疗效。有研究在47例屈肌腱重建者肌腱损伤修复的腱鞘内或局部置管,分别注入两种透明质酸钠凝胶制剂,透明质酸钠Ⅰ号(20 mg/2 mL)和透明质酸钠Ⅱ号(20 mg/2 mL);对照组不用透明质酸钠[37]。结果显示,47例经1-3个月随访,对照组优良率为64.71%,透明质酸钠Ⅰ组为68.75%,透明质酸钠Ⅱ组为42.86%,3组间比较差异有显著性意义;各组均未见明显不良反应,两种透明质酸钠凝胶均有明显抑制重建后屈肌腱粘连形成的作用,且使用安全方便。 2.2.2 几丁糖 几丁糖是从甲壳动物如虾、蟹的外壳中提取得到的,水溶性好,生产成本低,已有研究证明其能促进肌键愈合,显著预防肌键粘连,在临床上有较好的应用前景[38]。几丁糖是一种具有粘弹性的高分子生物材料,为在运动性肌腱损伤部位放置可降解、吸收的高分子材料,可以保护创面,减少出血,抑制瘢痕组织形成,重建后防止粘连,减少挛缩。常文凯等[39]通过动物实验比较目前较成熟几种防肌腱粘连的材料,为临床提供依据。将雄性新西兰大白兔40只随机分为4组,每组10只,分别取左后肢第二、三趾为组内配对,在实验动物第二趾近节将屈肌腱切断后,对照组直接闭合切口,实验组分别在缝合口周围涂抹透明质酸钠、几丁糖、生物蛋白胶后闭合切口;各组第三趾缝合肌腱后加用聚乳酸可吸收膜包绕吻合口。6周后对肌腱行大体、组织学观察及生物力学测试。结果显示,大体及光镜观察显示各实验组粘连程度均低于对照组,其中透明质酸钠组和几丁糖+医用膜组粘连程度最低,肌腱拉出距离及总活动度比值各组与对照组比较差异均有统计学意义,疗效显著,说明几种防肌腱粘连的材料无论单一及其配对组合均有助于减少肌腱粘连,对肌腱愈合强度没有影响,为临床上防止肌腱粘连提供新的途径。 几丁糖具有明显的防粘连效果,是较理想的防粘连材料,肌腱损伤重建中运用几丁糖在腱周局部浸润,修复屈肌腱功能优良率明显提高[40]。 2.2.3 胶原蛋白及其复合生物材料Ⅰ型牛胶原蛋白生物膜是以鲁西黄牛的肌腱为主要原材料制作的,带有一定三维孔隙结构的可吸收生物膜。三维孔隙结构允许组织液中的营养物质透过孔隙为肌腱提供养分,在肌腱早期愈合过程中在其周围形成腱鞘样结构,可有效预防肌腱粘连。单海民等[41-42]通过临床研究发现,Ⅰ型牛胶原蛋白生物膜预防肌腱粘连效果确切。链霉素缓释复合降解膜是以明胶和壳聚糖为原料,按一定比例制成缓释液,加入链霉素后铺膜晒干后形成,可在体内自行降解吸收,无需二次取出。富玲等[43]通过动物实验发现链霉素缓释复合降解膜能抑制腱周结缔组织增生,防止腱周结缔组织长入肌腱内,从而减轻肌腱粘连发生。 研究发现众多细胞因子均具有调控肌腱内、外愈合,改善肌腱力学特性,减少肌腱粘连的作用,但其作用于肌腱愈合的时间及位点各不相同。目前研究较多的有转化生长因子、血小板源性生长因子、碱性成纤维细胞生长因子、上皮生长因子等。国外报道转化生长因子可促进成纤维细胞和巨噬细胞的聚集,同时能促进腱细胞增殖和胶原合成,但也会增加粘连组织的形成等[44]。因此学者们对核心蛋白聚糖和6-磷酸甘露糖等转化生长因子抑制剂的使用进行了相关研究,发现核心蛋白聚糖可以改善肌腱滑移距离和关节总屈曲度,而6-磷酸甘露糖可以降低腱鞘和腱内的胶原合成 ,二者均可有效减少肌腱粘连的形成[45]。盛加根等[46]通过动物实验发现碱性成纤维细胞生长因子能有效地促进屈肌腱愈合,显着减少肌腱粘连。Liu等[47]发现应用一种包含碱性成纤维细胞生长因子纳米微粒的静电纤维膜也能预防肌腱粘连。对Synoviolin基因及matrix metalloproteinase-9基因等的研究也表明,将外源基因导入靶细胞并表达,可以调控肌腱粘连的发生,为肌腱粘连的防治指引了新的方向。"
[1] Oh EJ,Park K,Kim KS,et al.Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives.J Controlled Release.2010;141:2-12.[2] Yamamoto E,Kogawa D,Tokura S,et al.Effects of the frequency and duration of cyclic stress on the mechanical properties of cultured collagen fascicles from the rabbit patellar tendon.J Biomech Eng. 2005; 127(7):1168-1175.[3] Kang DY. Extraction of hyaluronic acid (HA) from rooster comb and characterization using flow field-flow fractionation (FlFFF) coupled with multiangle light scattering(MALS).JSep Sci.2010; 33(22):3530-3536.[4] Liu W,Cai Z,Wang D,et al.Blocking transforming growth factor-beta receptor signaling down- regulates transforming growth factor-beta1 autoproduction in keloid fibroblasts.Chin J Traumatol. 2002;5(2):77-85.[5] Vázquez JA,Rodríguez-Amado I, Montemayor IM. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review.Marine Drugs. 2013;11:747-774.[6] Muradoa MA,Montemayora MI,Cabo ML,et al. Optimization of extraction and purification process of hyaluronic acid from fish eyeball.Food Bioprod Process.2012;90(C3):491-498.[7] Biagini G,Bertani A,Muzzarelli R,et al.Wound management with N-carboxybutyl chitosan.Biomaterials.1991;12(3):281-286.[8] Amagai I,Tashiro Y,Ogawa H.Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization.Fisheries Sci.2009;75(3):805-810.[9] Oryan A,Moshiri A,Meimandi-Parizi A. Implantation of a novel tissue-engineered graft in a large tendon defect initiated inflammation, accelerated fibroplasia and improved remodeling of the new Achilles tendon: a comprehensive detailed study with new insights.Cell Tissue Res. 2014;355(1):59-80.[10] Meislin RJ,Wiseman DM,Alexander H,et al.A biomechanical study of tendon adhesion reduction using a biodegradable barrier in a rabbit model.J Appl Biomater. 1990;1(1):13-9.[11] Saygi B,Saritzali I,Karaman O,et al.The Effect of Dehydration and Irrigation on Tendon Adhesion Formation after Tendon Exposure.Acta Orthop Traumatol Turc. 2012;46(5):393-397.[12] Sadhasivam G.Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatus narinari.Int J Biol Macromol. 2013;54:84-89.[13] Choi KY,Min KH,Yoon HY,et al.PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo.Biomaterials. 2011;32:1880-1889.[14] Duceppe N,Tabrizian M.Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials. 2009;30(13):2625-2631.[15] Sato T,Shimizu H,Beppu M,et al.Effects on bone union and prevention of tendon adhesion by new porous anti-adhesive poly L-lactide-co-ε- caprolactone membrane in a rabbit model.Hand Surg.2013;18(1):1-10. [16] Hakimi O,Murphy R,Stachewicz U,et al.An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair.Eur Cell Mater. 2012;24:344-357.[17] Kong M,Chen XG,Park HJ.Design and investigation of nanoemulsified carrier based on am-phiphile- modified hyaluronic acid.Carbohydr Polym. 2011;83(2):462-469.[18] Oldinski RA.Synthesis and characterization of a hyaluronan- polyethylene copolymer for biomedical applications.J Biomed Mater Res Part B: Appl Biomater. 2010;94: 441-446.[19] Choi KY,Chung H,Min KH,et al.Self-assembled hyaluronic acid nanoparticles for active tumor targeting.Biomaterials.2010;31(1):106-114.[20] Bartone FF,Adickes ED.Chitosan: effects on wound healing in urogenital tissue: preliminary report.J Urol.1988;140(5 PT2):1134-1134.[21] 刘宇洲,劳杰,赵新.聚-DL-乳酸可吸收医用膜防止鸡肌腱粘连的实验研究[J].生物骨科材料与临床研究, 2012,10(2):10-13.[22] 路来金,李征,路璐,等.鹿茸多肽/聚羟基乙酸-聚乳酸复合膜促进肌腱愈合和预防肌腱粘连的实验研究[J].中华显微外科杂志,2007,30(3):197-199.[23] 刘毅,杨忠奎,庄文杰,等.可吸收医用膜预防肌腱粘连的临床疗效观察[J].中国实用医药, 2015,10(5):125-126.[24] 王继宏,温树正,樊东升,等.医用可吸收防粘连膜在肌腱修复中的临床应用[J].中华临床医师杂志:电子版, 2014,7(7):144-146.[25] 贺小虎.聚乳酸-聚羟乙酸/磷酸三钙薄膜预防肌腱粘连的实验研究[D].江苏:东南大学,2006:1-47.[26] Klokkevold PR,Subar P,Fukayama H,et al.Effect of chitosan on lingual hemostasis in rabbits with platelet dysfunction induced by epoprostenol.J Oral Maxillofac Surg.1992;50(1):41-45.[27] Vazquez CP,Boudou T,Dulong V,et al.Variation of polyelectrolyte film stiffness by photocross-linking: a new way to control cell adhesion. Langmuir. 2009;25(6):3556-3563.[28] Suckow MA,Hodde JP,Woher WR,et al.Repair of experimental achilles tenotomy with porcine renal capsule matetial in a rat model.J Mater Sci Mater Med.2007;18:1105-1110.[29] Fukasawa M,Abe H,Masaoka T,et al.The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model.Surg Today. 1992;22(4): 333-338.[30] Oldinski RA.Dynamic mechanical analysis and biomineralization of hyaluronan-polyet-hylene copolymers for potential use in osteochondral defect repair.Acta Biomater.2010;7:1184-1191.[31] 杨成林,华秋,孟庆忠.局部应用透明质酸钠对手及前臂屈肌腱粘连的预防[J].中国临床康复, 2005,9(46): 14-15.[32] Pravata L,Braud C,Boustta M,et al.New amphiphilic lactic acid oligomer-hyaluronan conjugates: synthesis and physicochemical characterization. Biomacromolecules.2007;9(1):340-348.[33] 左强,董乐乐,樊建军.透明质酸衍生物Seprafilm防粘连薄膜防止肌腱粘连的实验研究[J]. 中国修复重建外科杂志, 2011,25(9):1094-1098.[34] Liu Y,Skardal AShu XZ,et al.Prevention of peritendious adhesions using a hyaluronan-derived hydrogel film following partial-thickness flexor tendon injury.J Orthop Res.2008;26(4):562-569.[35] Liu L,Liu Y,Li J,et al.Microbial production of hyaluronic acid: current state, challenges, and perspectives.Microbial Cell Factories.2011;10:99.[36] 何伟华,黄昌林,左新成,等.应用透明质酸钠对跟腱断裂术后疗效的影响[J].创伤外科杂志,2005,7(3):211-212.[37] 王韶进,戴国锋,李昕,等.透明质酸钠预防屈肌腱粘连的临床研究[J].中国修复重建外科杂志, 2002,16(1):28-30.[38] Palumbo FS,Pitarresi G,Mandracchia D,et al.New graft copolymers of hyaluronic acid and polylactic acid: synthesis and characterization.Carbohyd Polym.2006;66(3): 379-385.[39] 常文凯,李刚,陈治,等.医用隔离材料防止肌腱粘连的实验研究[J].中华手外科杂志,2008,(24):107-110.[40] 杨绍安,尹烈,肖晓桃.几丁糖结合早期控制被动活动对屈指肌腱粘连的预防作用[J].中国临床康复, 2004,18(35):7916-7917.[41] 单海民,程春生,赵治伟,等.Ⅰ型牛胶原蛋白生物膜预防屈指肌腱损伤术后粘连的临床研究[J].中国中医骨伤科杂志, 2013,21(4):33-35.[42] Zhang H,Sheng ZJ,Hou CL.[Effect of chitosan membrane on tendon adhesion and healing]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1999;13(6):382-385.[43] 富玲,宋宁,苏学忠,等.链霉素缓释复合降解膜植入损伤肌腱局部腱周结缔组织的变化[J].中国组织工程研究与临床康复,2011,15(21):3895-3899.[44] Bolcato Bellemin AL,Elkaim R,Abehsera A,et al.Expression of mRNAs encoding for alpha and beta integrin subunits,MMPs,and TIMPs in stretched human periodontal ligament and gingival fibroblasts.J Dent Res.2000;79(9):1712-1716.[45] Xia C,Zuo J,Wang C,et al.Tendon healing in vivo:effect of mannose-6-phosphate on flexor tendon adhesion formation. Orthopedics. 2012;35(7):e1056-1060.[46] 盛加根,曾炳芳,姜佩珠,等.局部单次使用bFGF及5-氟尿嘧啶促进屈肌腱愈合和防止肌腱粘连形成的实验研[J].中国修复重建外科杂志,2011,25(6):711-717.[47] Liu S,Qin M,Hu C,et al.Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles.Biomaterials.2013;34(19):4690-4701.[48] Strick MJ,Filan SL,Hile M,et al.Adhesion Formation after Flexor Tendon Repair: Comparison of Two- and Four-Strand Repair without Epitendinous Suture.Hand Surg.2005;10(2-3):193-197.[49] Volpi N,Maccari F.Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis.Biochimie.2003;85:619-625.[50] Evaürgeová KV.Extraction of hyaluronic acid from eggshell membranes.Curr Opin Biotechnol. 2013;24(1):S106.[51] Klokkevold PR,Fukayama H,Sung EC,et al.The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits.J Oral Maxillofac Surg. 1999;57(1):49-52.[52] Lai J Y.Ocular biocompatibility of carbodiimide cross linked hyaluronic acid hydrogels for cell sheet delivery carriers.J Biomat Sci.2010;21:359-376.[53] Namba J,Shimada K,Saito M,et al.Modulation of peritendinous adhesion formation by alginate solution in a rabbit flexor tendon model.J Biomed Mater Res B Appl Biomater.2007;80(1):273-279.[54] Demirkan F,Colakoglu N,Herek O,et al.The use of amniotic membrane in flexortemdon repair.An experimental model.Arch Orthop Trauma Surg.2002;122(7):396. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||