[1] Kawai M, Bessho K, Maruyama H, et al. Simultaneous gene transfer of bone morphogenetic protein (BMP) -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression. BMC Musculoskelet Disord. 2006;7:62.
[2] 金夏生,王子江,向川.LMP-1基因转染骨髓间充质干细胞的LIM矿化蛋白表达[J].中国组织工程研究,2014,18(23):3633-3638.
[3] 刘会文,罗嘉全,韩智敏,等.LIM矿化蛋白1促进成骨的研究现状[J].中国骨与关节外科,2011,4(4):334-337.
[4] 王皓,李谌,郜玉忠.突变型低氧诱导因子1α加速骨缺损部位新血管生成的实验观察[J].西安交通大学学报(医学版),2015,36(4): 455-461.
[5] Chang J, Jackson SG, Wardale J, et al. Hypoxia modulates the phenotype of osteoblasts isolated from knee osteoarthritis patients, leading to undermineralized bone nodule formation. Arthritis Rheumatol. 2014;66(7):1789-1799.
[6] Kaito T, Johnson J, Ellerman J, et al. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Joint Surg Am. 2013; 95(17): 1612-1619.
[7] Liu Y, Chen C, He H, et al. Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro. Acta Biochim Biophys Sin (Shanghai). 2012;44(10):856-865.
[8] 林立新,黄勇,王玉婷,等.不同部位脂肪源性干细胞的生物学特性比较[J].中国组织工程研究,2013,17(27):4992-4997.
[9] Zhang Q, Wang X, Chen Z, et al. Semi-quantitative RT-PCR analysis of LIM mineralization protein 1 and its associated molecules in cultured human dental pulp cells. Arch Oral Biol. 2007;52(8):720-726.
[10] Viggeswarapu M, Boden SD, Liu Y, et al. Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am. 2001;83-A(3): 364-376.
[11] Strohbach CA, Rundle CH, Wergedal JE, et al. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcif Tissue Int. 2008; 83(3):202-211.
[12] 张大伟.具有成骨诱导活性的新型融合蛋白的实验研究[D].西安:第四军医大学,2007.
[13] Minamide A, Boden SD, Viggeswarapu M, et al. Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J Bone Joint Surg Am. 2003; 85-A(6):1030-1039.
[14] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755-764.
[15] 李雪峰.转染LMP-1基因人脂肪间充质干细胞与退变髓核细胞体外双层细胞微球三维条件下共培养的实验研究[D].苏州:苏州大学,2012.
[16] Zigdon-Giladi H, Rudich U, Michaeli Geller G, et al. Recent advances in bone regeneration using adult stem cells. World J Stem Cells. 2015;7(3):630-640.
[17] Goerke SM, Obermeyer J, Plaha J, et al. Endothelial progenitor cells from peripheral blood support bone regeneration by provoking an angiogenic response. Microvasc Res. 2015;98:40-47.
[18] Gao Y, Li C, Wang H, et al. Acceleration of bone-defect repair by using A-W MGC loaded with BMP2 and triple point-mutant HIF1α-expressing BMSCs. J Orthop Surg Res. 2015;10:83.[19] Zhang W, Zhu C, Wu Y, et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater. 2014;27:1-11; discussion 11-12.
[20] Wang X, Cui F, Madhu V, et al. Combined VEGF and LMP-1 delivery enhances osteoprogenitor cell differentiation and ectopic bone formation. Growth Factors. 2011;29(1):36-48.
[21] Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med. 2000;6(10):1102-1103.
[22] Brahimi-Horn C, Pouysségur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer. 2006;93(8):E73-80.
[23] 邵进,张岩,王治,等.低氧诱导因子-1α参与骨发育及骨代谢调控的研究进展[J].中国骨质疏松杂志,2015,21(3):349-355.
[24] Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117(6):1616-1626.
[25] Wan C, Shao J, Gilbert SR, et al. Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci. 2010;1192:322-326.
[26] Liang CS, Xiang C, Wei ZY, et al. Effects of recombinant gene lentivirus containing LIM mineralization protein-1 on proliferation effect and expression of bone marrow mesenchymal stem cells in rats. Zhongguo Gu Shang. 2013; 26(12):1023-1027.
[27] 付志杰,张巨峰,王大平,等.携带低氧诱导因子1α慢病毒感染大鼠骨髓间充质干细胞后成骨基因的表达[J].中国组织工程研究, 2014,18(28):4455-4462.
[28] Zou D, Han W, You S, et al. In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Cell Prolif. 2011;44(3):234-243.
[29] He J, Genetos DC, Yellowley CE, et al. Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. J Cell Biochem. 2010;110(1):87-96.
[30] Malladi P, Xu Y, Chiou M, et al. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol. 2006;290(4):C1139-1146.
[31] Malladi P, Xu Y, Chiou M, et al. Hypoxia inducible factor-1alpha deficiency affects chondrogenesis of adipose-derived adult stromal cells. Tissue Eng. 2007;13(6): 1159-1171.
[32] Sahai S, Williams A, Skiles ML, et al. Osteogenic differentiation of adipose-derived stem cells is hypoxia- inducible factor-1 independent. Tissue Eng Part A. 2013; 19(13-14):1583-1591.
[33] Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev. 2013;19(3):254-263.
[34] Hu N, Jiang D, Huang E, et al. BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci. 2013;126(Pt 2):532-541.
[35] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-732.
[36] Morizono K, De Ugarte DA, Zhu M, et al. Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther. 2003;14(1):59-66.