Chinese Journal of Tissue Engineering Research ›› 2018, Vol. 22 ›› Issue (7): 1096-1101.doi: 10.3969/j.issn.2095-4344.0123
Previous Articles Next Articles
Yang Li-feng1, Xiao Dong-min2, Peng Chun-lei3, Li Kang-hua4, Yang Bin-hui1, Liu Feng-hu1, Wei Yong-kun1, Zhang Bo1, Li Wu-jian1, Zheng Jin-zhe1, Wang Wei-gang1
Online:
2018-03-08
Published:
2018-03-08
About author:
Yang Li-feng, Master, Attending physician, Department of Orthopedics, Affiliated 3201 Hospital, Xi’an Jiaotong University, Hanzhong 723000, Shaanxi Province, China
Supported by:
the National High Technology Research and Development Program of China (863 Program), No. 2011AA030101
CLC Number:
Yang Li-feng, Xiao Dong-min, Peng Chun-lei, Li Kang-hua, Yang Bin-hui, Liu Feng-hu, Wei Yong-kun, Zhang Bo, Li Wu-jian, Zheng Jin-zhe, Wang Wei-gang. Finite element analysis for self-made femoral head brace device in the treatment of early femoral head necrosis[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(7): 1096-1101.
2.1 负载试验 正常股骨头受压后应力分散并向下传导,压应力集中在股骨距、张应力集中于转子窝;髓芯减压后股骨头部负重区应力集中,位移大,应变增大,股骨头容易塌陷;内撑器置入并植骨后应力、应变的变化与正常股骨头部应力、应变相近(图4)。 2.2 正常股骨头部位移载荷曲线分析 从股骨头内侧向外侧应力开始逐渐增高,在3.8 cm处应力集中达峰值 6 325 kPa,然后峰值下降应力减少,在3.29 cm处应力再次逐渐增加,在2.82 cm处达到4 746 kPa然后曲线平缓,在股骨头部外侧应力逐渐减少且应力大小变化趋于平缓,从而分析应力主要集中于股骨头前外侧(图5)。 2.3 减压股骨头部位移载荷曲线分析 减压股骨头部负载后,从股骨头内侧向外侧应力开始增高,在股骨头表面4.25 cm处,应力集中达峰值21 020 kPa,然后应力减少,在2.82-2.35 cm处应力集中;逐渐向外侧应力减小,曲线平缓。在股骨头部外侧应力逐渐减少,应力大小变化平稳;在4.23-2.82 cm处应力最小,说明减压区应力减小,减压周围应力集中(图6)。 2.4 股骨头内撑器固定模型位移载荷曲线分析 从股骨头内侧到外侧应力逐渐增加,且应力增加是逐渐增加,趋于平缓;在2.35-2.82 cm处应力集中达峰值2 421 kPa,应力小于正常股骨头部应力值;较正常股骨头部应力集中部位峰值远,应力值较正常小,从图分析内撑器分担了应力,防止了股骨头塌陷,能为股骨头髓芯减压后提供有效支撑(图7)。 2.5 各种模型股骨头内侧向外侧的位移云图 正常股骨模型股骨头部位移最大值为-0.632 mm(负值);大转子区最小,为-0.114 mm(图8)。减压模型股骨头部位移最大值为-0.682 mm(负值);大转子区最小,为-0.260 mm(图9)。内撑器模型股骨头部最大值为-0.442 mm(负值);大转子区最小,为-0.188 mm(图10)。比较3种模型位移云图,减压模型位移最大,应变最大,说明容易塌陷;内撑器模型位移最小,应变最小,不容易塌陷,可以达到正常模型的机械支撑。"
[1] 李子荣.股骨头坏死的早期诊断治疗及合理治疗[J].中华关节外科杂志: 电子版,2008,2(1): 1-3. |
[1] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[2] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[3] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[4] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[5] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[6] | Xu Yulin, Shen Shi, Zhuo Naiqiang, Yang Huilin, Yang Chao, Li Yang, Zhao Heng, Zhao Lu. Biomechanical comparison of three different plate fixation methods for acetabular posterior column fractures in standing and sitting positions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 826-830. |
[7] | Cai Qunbin, Zou Xia, Hu Jiantao, Chen Xinmin, Zheng Liqin, Huang Peizhen, Lin Ziling, Jiang Ziwei. Relationship between tip-apex distance and stability of intertrochanteric femoral fractures with proximal femoral anti-rotation nail: a finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 831-836. |
[8] | Song Chengjie, Chang Hengrui, Shi Mingxin, Meng Xianzhong. Research progress in biomechanical stability of lateral lumbar interbody fusion [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 923-928. |
[9] | Liu Zhao, Xu Xilin, Shen Yiwei, Zhang Xiaofeng, Lü Hang, Zhao Jun, Wang Zhengchun, Liu Xuzhuo, Wang Haitao. Guiding role and prospect of staging and classification combined collapse prediction method for osteonecrosis of femoral head [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 929-934. |
[10] | Xie Chongxin, Zhang Lei. Comparison of knee degeneration after anterior cruciate ligament reconstruction with or without remnant preservation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 735-740. |
[11] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[12] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[13] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[14] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[15] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||