[1] TANG X, JING L, RICHARDSON WJ, et al. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res. 2016;34(8):1316-1326.
[2] WU PH, KIM HS, JANG IT. Intervertebral Disc Diseases PART 2: A Review of the Current Diagnostic and Treatment Strategies for Intervertebral Disc Disease. Int J Mol Sci. 2020;21(6):2135.
[3] GBD 2019 DISEASES AND INJURIES COLLABORATORS. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-1222.
[4] SAEIDIAN AH, YOUSSEFIAN L, VAHIDNEZHAD H, et al. Research Techniques Made Simple: Whole-Transcriptome Sequencing by RNA-Seq for Diagnosis of Monogenic Disorders. J Invest Dermatol. 2020;140(6):1117-1126.e1.
[5] VELCULESCU VE, ZHANG L, ZHOU W, et al. Characterization of the yeast transcriptome. Cell. 1997;88(2):243-251.
[6] TEVES JM, WON KJ. Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology. Mol Cells. 2020;43(7):591-599.
[7] RAO A, BARKLEY D, FRANÇA GS, et al. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871): 211-220.
[8] BARECHE Y, BUISSERET L, GRUOSSO T, et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach. J Natl Cancer Inst. 2020;112(7):708-719.
[9] LIU G, HU Q, PENG S, et al. The spatial and single-cell analysis reveals remodeled immune microenvironment induced by synthetic oncolytic adenovirus treatment. Cancer Lett. 2024;581:216485.
[10] ZHAO B, LU M, WANG D, et al. Corrigendum to “Genome-Wide Identification of Long Noncoding RNAs in Human Intervertebral Disc Degeneration by RNA Sequencing”. Biomed Res Int. 2019;2019:3132626.
[11] HUANG Y, LEI L, ZHAO Z, et al. Acetylshikonin promoting PI3K/Akt pathway and inhibiting SOX4 expression to delay intervertebral disc degeneration and low back pain. J Orthop Res. 2024;42(1):172-182.
[12] ZHANG Y, HAN S, KONG M, et al. Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthritis Cartilage. 2021; 29(9):1324-1334.
[13] 何志伟.基于RNA-seq技术探究芝麻素影响椎间盘退变的机制研究[D].呼和浩特:内蒙古医科大学,2023.
[14] 李振聪.基于单细胞测序的人正常和退变髓核细胞差异性分析[D].广州:暨南大学,2022.
[15] FERNANDES LM, KHAN NM, TROCHEZ CM, et al. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep. 2020;10(1):15263.
[16] SHI X, LI P, WU X, et al. Whole-transcriptome sequencing identifies key differentially expressed circRNAs/lncRNAs/miRNAs/mRNAs and linked ceRNA networks in adult degenerative scoliosis. Front Mol Neurosci. 2023;16:1038816.
[17] 李志超,王磊,薛景才,等.转录组分析鉴定腰椎椎间盘退行性变中潜在免疫相关生物标志物[J].脊柱外科杂志,2023, 21(5):316-325.
[18] CHEN F, LEI L, CHEN S, et al. Serglycin secreted by late-stage nucleus pulposus cells is a biomarker of intervertebral disc degeneration. Nat Commun. 2024;15(1):47.
[19] FAN Y, ZHAO L, XIE W, et al. Serum miRNAs are potential biomarkers for the detection of disc degeneration, among which miR-26a-5p suppresses Smad1 to regulate disc homeostasis. J Cell Mol Med. 2019;23(10):6679-6689.
[20] FAN Z, ZHAO W, FAN S, et al. Identification of Potential Biomarkers for Intervertebral Disc Degeneration Using the Genome-Wide Expression Analysis. J Comput Biol. 2020;27(9):1341-1349.
[21] ZHAN J, WANG S, WEI X, et al. Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration. Bioengineered. 2021;12(1): 5069-5084.
[22] TAN J, SHI M, LI B, et al. Role of arachidonic acid metabolism in intervertebral disc degeneration: identification of potential biomarkers and therapeutic targets via multi-omics analysis and artificial intelligence strategies. Lipids Health Dis. 2023;22(1):204.
[23] 何升华,赖居易,孙志涛,等.基于RNA-seq技术分析腰突颗粒防治腰椎间盘退变的转录组学特征[J].中国组织工程研究,2017,21(24):3778-3783.
[24] WANG H, WANG D, LUO B, et al. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater. 2022;14:350-363.
[25] WASINGER VC, CORDWELL SJ, CERPA-POLJAK A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995;16(7):1090-1094.
[26] THUL PJ, ÅKESSON L, WIKING M, et al. A subcellular map of the human proteome. Science. 2017;356(6340):eaal3321.
[27] RAJASEKARAN S, TANGAVEL C, K S SVA, et al. Inflammaging determines health and disease in lumbar discs-evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J. 2020;20(1):48-59.
[28] WANGLER S, KAMALI A, WAPP C, et al. Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis. Stem Cell Res Ther. 2021;12(1):11.
[29] QIU C, WU X, BIAN J, et al. Differential proteomic analysis of fetal and geriatric lumbar nucleus pulposus: immunoinflammation and age-related intervertebral disc degeneration. BMC Musculoskelet Disord. 2020;21(1):339.
[30] KUDELKO M, CHEN P, TAM V, et al. PRIMUS: Comprehensive proteomics of mouse intervertebral discs that inform novel biology and relevance to human disease modelling. Matrix Biol Plus. 2021;12: 100082.
[31] LIU C, YANG M, LIU L, et al. Molecular basis of degenerative spinal disorders from a proteomic perspective (Review). Mol Med Rep. 2020;21(1):9-19.
[32] TAM V, CHEN P, YEE A, et al. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. Elife. 2020;9:e64940.
[33] YANG X, LU Y, ZHOU H, et al. Integrated proteome sequencing, bulk RNA sequencing and single-cell RNA sequencing to identify potential biomarkers in different grades of intervertebral disc degeneration. Front Cell Dev Biol. 2023;11:1136777.
[34] 王华聪.蛋白质组学70kDa热休克蛋白8变化对人椎间盘退变影响的实验研究[D].青岛:青岛大学,2019.
[35] ZHANG G, LI L, YANG Z, et al. TMT-Based Proteomics Analysis of Senescent Nucleus Pulposus from Patients with Intervertebral Disc Degeneration. Int J Mol Sci. 2023; 24(17):13236.
[36] 陈志光,叶东平.正常与退变人椎间盘的蛋白质组学差异比较[J].世界最新医学信息文摘(连续型电子期刊),2020, 20(72):119-120.
[37] LIAO Z, SU D, LIU H, et al. Dihydroartemisinin Attenuated Intervertebral Disc Degeneration via Inhibiting PI3K/AKT and NF-κB Signaling Pathways. Oxid Med Cell Longev. 2022;2022:8672969.
[38] SHAO J, YU M, JIANG L, et al. Sequencing and bioinformatics analysis of the differentially expressed genes in herniated discs with or without calcification. Int J Mol Med. 2017;39(1):81-90.
[39] ZIGOURIS A, ALEXIOU GA, BATISTATOU A, et al. The role of matrix metalloproteinase 9 in intervertebral disc degeneration. J Clin Neurosci. 2011;18(10):1424-1425.
[40] 邰志洪,桂裕昌,许建文,等.基于iTRAQ结合LC-MS/MS技术筛选腰椎间盘突出症活血化瘀治疗的目标蛋白质[J].时珍国医国药,2017,28(5):1256-1260.
[41] MANZONI C, KIA DA, VANDROVCOVA J, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2018;19(2):286-302.
[42] BEN-CHETRIT N, NIU X, SWETT AD, et al. Integration of whole transcriptome spatial profiling with protein markers. Nat Biotechnol. 2023;41(6):788-793.
[43] KUMAR D, BANSAL G, NARANG A, et al. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics. 2016;16(19):2533-2544.
[44] XU C, LUO S, WEI L, et al. Integrated transcriptome and proteome analyses identify novel regulatory network of nucleus pulposus cells in intervertebral disc degeneration. BMC Med Genomics. 2021;14(1):40.
|