[1] RAMASAMY SK, KUSUMBE AP, WANG L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 2014;507(7492):376-380.
[2] 彭荟桢,蔡明详,刘湘宁.骨修复过程中的血管生成调控:新思路与新方法[J].中国组织工程研究,2022,26(15):2400-2405.
[3] KUSUMBE AP, RAMASAMY SK, ADAMS RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014; 507(7492):323-328.
[4] 赵常红,关彩萍.H型血管在骨构建和重塑中的作用机制[J].中华骨质疏松和骨矿盐疾病杂志,2023,16(4):404-412.
[5] 唐生平,廖世杰,黄乾,等.骨H型血管生成机制及影响因素的研究现状[J].中国矫形外科杂志,2024,32(6):525-529.
[6] PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426.
[7] SHEN Z, DONG W, CHEN Z, et al. Total flavonoids of Rhizoma Drynariae enhances CD31 hi Emcn hi vessel formation and subsequent bone regeneration in rat models of distraction osteogenesis by activating PDGF-BB/VEGF/RUNX2/OSX signaling axis. Int J Mol Med. 2022;50(3):1-13.
[8] 刘晓南,余斌.H型血管在骨发育及骨疾病中作用研究进展[J].中国骨质疏松杂志, 2023,29(5): 751-757.
[9] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015, 33(2):242-253.
[10] 王继猛.骨损伤修复中H型血管的分布和作用及血管束神经束联合植入组织工程骨修复羊大段胫骨缺损的研究[D].西安:第四军医大学,2017.
[11] 陈文娟.数字资源评价研究特征、前沿与展望:基于WOS数据库的文献计量学分析[J].图书馆学研究,2022(7):2-14.
[12] 李曌嫱,秦义,田元祥,等.针灸治疗腰椎间盘突出症的CiteSpace知识图谱可视化分析[J].中国针灸,2017,37(5):545-548.
[13] 李媛媛,蔡世新,王林,等.BMSCs对牙周炎大鼠破骨细胞成骨分化、炎症反应及碱性磷酸酶的影响[J].中国老年学杂志, 2024,44(13):3280-3284.
[14] 张怡凡,陈悦,周硕,等.HIF-1α通过调控H型血管生成参与牙周炎的发展[J].山西医科大学学报,2024,55(6):746-752.
[15] 申震,姜自伟,陈国茜,等.成血管-成骨偶联相关因子、细胞在骨中作用机制的研究进展[J].中国骨质疏松杂志,2020,26(3):458-463.
[16] SHEN Z, CHEN Z, LI Z, et al. Total flavonoids of Rhizoma Drynariae enhances angiogenic-osteogenic coupling during distraction osteogenesis by promoting type H vessel formation through PDGF-BB/PDGFR-β instead of HIF-1α/VEGF axis. Front Pharmacol. 2020; 11:503524.
[17] MA Y, SUN L, ZHANG J, et al. Exosomal mRNAs for angiogenic–osteogenic coupled bone repair. Adv Sci. 2023;10(33):2302622.
[18] XU T, LUO YJ, KONG FQ, et al. GIT1 is critical for formation of the CD31hiEmcnhi vessel subtype in coupling osteogenesis with angiogenesis via modulating preosteoclasts secretion of PDGF-BB. Bone. 2019;122:218-230.
[19] MASQUELET AC. La technique de la membrane induite dans les reconstructions osseuses segmentaires: développement et perspectives. Bulletin de l’Académie Nationale de Médecine. 2017;201(1-3):439-453.
[20] 李定,李悦,黄枫,等.骨碎补总黄酮在诱导膜技术中对骨缺损区域血管形成和成骨质量的影响[J].中华中医药杂志,2019,34(11): 5086-5089.
[21] 韩凤平,李怀任,常文利,等.生物材料在Masquelet技术中的应用[J].中国组织工程研究,2024,28(10):1634-1640.
[22] 曾志奎,黄枫,李悦,等.骨碎补总黄酮对大鼠Masquelet诱导膜血管新生因子表达的影响[J].中华中医药学刊,2019,37(10): 2345-2348,2565-2567.
[23] WU H, XU T, CHEN Z, et al. Specific inhibition of FAK signaling attenuates subchondral bone deterioration and articular cartilage degeneration during osteoarthritis pathogenesis. J Cell Physiol. 2020;235(11):8653-8666.
[24] ZHANG K, YU J, LI J, et al. The combined intraosseous administration of orthobiologics outperformed isolated intra-articular injections in alleviating pain and cartilage degeneration in a rat model of MIA-induced knee osteoarthritis. Am J Sports Med. 2024; 52(1):140-154.
[25] ZHOU C, MENG J, ZHAO C, et al. PTH [1-34] improves the effects of core decompression in early-stage steroid-associated osteonecrosis model by enhancing bone repair and revascularization. PLoS One. 2017;12(5): e0178781.
[26] LU J, ZHANG H, CAI D, et al. Positive‐feedback regulation of subchondral H‐type vessel formation by chondrocyte promotes osteoarthritis development in mice. J Bone Miner Res. 2018;33(5):909-920.
[27] CUI Z, WU H, XIAO Y, et al. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res. 2022;10(1):58.
[28] 李小云,王昊宇,林青,等.虎杖苷防治衰老相关骨代谢疾病研究[J].中国骨质疏松杂志,2023,29(7):1069-1073.
[29] 田佳庆,韦雨柔,肖方骏,等.虎杖苷调控HIF-1α/VEGF信号通路对绝经后骨质疏松症大鼠H型血管生成的影响[J].中成药,2024, 46(5):1672-1676.
[30] 宋红梅,谢文博,林菲菲,等.温阳补肾方对激素性股骨头坏死模型兔血清中成骨、成血管因子及H型血管标志物的影响[J].中国中医骨伤科杂志,2023,31(10):6-11.
[31] WEI X, ZHOU W, TANG Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2023;20:16-28.
[32] YOU J, LI Y, WANG C, et al. Mild thermotherapy‐assisted GelMA/HA/MPDA@Roxadustat 3D‐printed scaffolds with combined angiogenesis‐osteogenesis functions for bone regeneration. Adv Healthc Mater. 2024;13(22):e2400545.
[33] GONZÁLEZ-VÁZQUEZ A, RAFTERY RM, GÜNBAY S, et al. Accelerating bone healing in vivo by harnessing the age-altered activation of c-Jun N-terminal kinase 3. Biomaterials. 2021; 268:120540.
[34] Li HZ, HAN D, AO RF, et al. Tanshinone IIA attenuates osteoarthritis via inhibiting aberrant angiogenesis in subchondral bone. Arch Biochem Biophys. 2024;753:109904.
[35] 王亮,盛茂,袁晔,等.骨内H型血管在去势骨质疏松症模型中的变化[J].中华骨科杂志,2020,40(13):873-879 .
[36] CHEN W, JIN X, WANG T, et al. Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling. Front Pharmacol. 2022;13:1010937.
[37] XU T, LUO YJ, KONG FQ, et al. GIT1 is critical for formation of the CD31hiEmcnhi vessel subtype in coupling osteogenesis with angiogenesis via modulating preosteoclasts secretion of PDGF-BB. Bone. 2019;122:218-230.
[38] FENG SK, CHEN TH, LI HM, et al. Deficiency of Omentin-1 leads to delayed fracture healing through excessive inflammation and reduced CD31hiEmcnhi vessels. Mol Cell Endocrinol. 2021;534:111373.
[39] ZENG Y, HUANG C, DUAN D, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater. 2022;153:108-123.
[40] 申震,姜自伟,李定,等.基于牵张成骨技术比较两种补肾法在成血管-成骨耦联机制中的作用差异[J].中华中医药杂志, 2019,34(5):2150-2155.
[41] 申震,陈泽华,郭英,等.骨碎补总黄酮对牵张成骨模型大鼠中H血管及成血管-成骨耦联的作用[J].中华中医药杂志,2022, 37(3):1352-1356.
[42] LI D, ZHAO D, ZENG ZK, et al. Ternary regulation mechanism of Rhizoma drynariae total flavonoids on induced membrane formation and bone remodeling in Masquelet technique. PLoS One. 2022;17(12):e0278688.
[43] 于海洋,卢增鹏,汪海燕,等.激素性股骨头坏死中Hif-1α/VEGF信号轴和H型血管改变的实验研究[J].中国实验动物学报, 2022,30(6):759-766.
[44] SHAO W, WANG B, WANG P, et al. Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head. Bone Res. 2024;12(1):64.
[45] XIONG G, YANG Y, GUO M. Effect of resveratrol on abnormal bone remodeling and angiogenesis of subchondral bone in osteoarthritis. Int J Clin Exp Pathol. 2021;14(4):417.
[46] SINGH A, VEERIAH V, XI P, et al. Angiocrine signals regulate quiescence and therapy resistance in bone metastasis. JCI Insight. 2019;4(13):e125679.
[47] YIP RKH, RIMES JS, CAPALDO BD, et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun. 2021;12(1):6920.
[48] WANG L, ZHOU F, ZHANG P, et al. Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis. 2017;8(5):e2760.
[49] XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 2018;24(6):823-833.
[50] HUANG J, YIN H, RAO SS, et al. Harmine enhances type H vessel formation and prevents bone loss in ovariectomized mice. Theranostics. 2018;8(9):2435.
[51] YANG M, LI CJ, SUN X, et al. MiR-497~195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun. 2017;8(1):16003.
[52] ROMEO SG, ALAWI KM, RODRIGUES J, et al. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat Cell Biol. 2019;21(4):430-441.
[53] RAMASAMY SK, KUSUMBE AP, SCHILLER M, et al. Blood flow controls bone vascular function and osteogenesis. Nat Commun. 2016;7(1):13601.
[54] XIE H, CUI Z, WANG L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014; 20(11):1270-1278. |