中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (在线): 1-9.

• •    

脑深部电刺激治疗改善抑郁症模型大鼠抑郁样行为增强前扣带回下游脑区神经元活动

杨昊南1,袁正巍2,许军鹏1,毛之奇1,张剑宁1   

  1. 1中国人民解放军总医院第一医学中心,北京市   100853;2北京脑与类脑研究所,北京市   102206
  • 出版日期:2026-01-01 发布日期:2025-06-16
  • 通讯作者: 张剑宁,博士,主任医师,中国人民解放军总医院第一医学中心,北京市 100853
  • 作者简介:杨昊南,男,1998年生,山西省阳泉市人,汉族,解放军总医院在读硕士,医师,主要从事抑郁症脑深部电刺激的研究。
  • 基金资助:
    科技创新2030(2021ZD0200407),项目负责人:毛之奇

Preliminary study on the mechanisms and efficacy of deep brain stimulation in treating depression

Haonan Yang1, Zhengwei Yuan2, Junpeng Xu1, Zhiqi Mao1, Jianning Zhang1   

  1. 1the First Medical Center of Chinese PLA General Hospital, Beijing 100853; 2Chinese Institute for Brain Research, Beijing 102206, China
  • Online:2026-01-01 Published:2025-06-16
  • Supported by:
    This study was supported by grants from China Brain Project (2021ZD0200407)

摘要:

文题释义:
脑深部电刺激:是一种通过植入大脑特定区域的电极发送电脉冲,调节异常神经活动的治疗技术。它主要用于帕金森病、特发性震颤、肌张力障碍等运动障碍疾病,也可探索性用于强迫症、抑郁症等精神疾病。
光纤记录:是一种利用植入式光纤实时检测活体动物脑内荧光信号变化的技术,常用于监测神经元群体的钙活动。通过表达钙指示蛋白(如GCaMP),结合光纤传输激发光并收集荧光信号,实现对自由行为动物神经活动的高时间分辨率记录,广泛应用于神经环路与行为关系的研究。

背景:前扣带回脑深部电刺激已成为精神类疾病如抑郁症外科治疗新疗法,但目前对电刺激的具体作用效果仍不清楚。前扣带回损伤可以显著改善小鼠抑郁行为,故推测通过DBS模拟电消融可以治疗抑郁症。
目的:结合光纤钙信号记录与C-fos免疫组化技术,系统解析前扣带回脑深部刺激的神经调控机制,并对比脑深部电刺激与电消融术对抑郁样行为的干预效应,为优化神经调控治疗策略提供实验依据。
方法:分组与造模:小鼠分为对照组、模型+假刺激组和模型+脑深部电刺激组。后两组通过3.5周慢性束缚应激(CRS)造模,并在前扣带回植入脑深部电刺激电极。干预方案:脑深部电刺激组接受每日2小时高频电刺激(130 Hz,200 μA,50 μs,持续1周),模型+假刺激组仅植入电极无电流刺激。行为学评估:通过强迫游泳实验(FST)、悬尾实验(TST)量化抑郁样行为。环路机制解析:实时神经活动监测:光纤记录前扣带回-脑深部电刺激对前扣带回-基底外侧杏仁核(BLA)环路的激活效应;焦虑行为分析:10只小鼠(脑深部电刺激组与对照组各5只)通过旷场实验(OFT)评估干预后焦虑样行为。全脑激活图谱:C-fos免疫组化染色量化下游脑区神经元活动。电消融验证:另设模型+电消融组与模型+假刺激组,验证其对抑郁样行为的改善效果。 
结果:行为学分析 :FST显示,模型+脑深部电刺激组与模型+假刺激组不动时间显著高于对照组(P < 0.05),但两组间无差异;TST中各组无显著差异。OFT表明,脑深部电刺激组中央区停留时间与移动距离显著低于对照组(P < 0.05),提示脑深部电刺激可能加剧焦虑样行为。模型+电消融组FST不动时间显著低于模型+假刺激组(P < 0.01)。神经机制:光纤记录证实前扣带回-脑深部电刺激特异性激活前扣带回-BLA环路;C-fos染色显示脑深部电刺激显著增强前扣带回下游脑区神经元活动。
结论:传统高频前扣带回-脑深部电刺激虽能有效激活目标神经环路,但未能改善抑郁样行为,反而可能通过增强边缘系统活动加剧焦虑状态;而前扣带回功能抑制(电消融)表现出显著抗抑郁效应,为优化神经调控策略提供了新方向。

关键词: 脑深部电刺激, 抑郁症, 前扣带回, 电消融, 光纤记录

Abstract: BACKGROUND: This study combined fiber photometry calcium signal recording with C-fos immunohistochemistry to systematically investigate the neural modulation mechanisms of deep brain stimulation (DBS) in the anterior cingulate cortex (ACC). It also compared the effects of DBS and electro-ablation on depressive-like behaviors, providing experimental evidence for optimizing neuromodulation treatment strategies. 
METHODS: Grouping and Modeling: Mice were randomly divided into control, CRS_Sham (sham stimulation), and CRS_DBS (intervention) groups. The latter two groups underwent 3.5 weeks of chronic restraint stress (CRS) modeling and had DBS electrodes implanted in the ACC. Intervention Protocol: The DBS group received daily high-frequency electrical stimulation (130 Hz, 200 μA, 50 μs, 2 hours/day for 1 week), while the Sham group underwent electrode implantation without current stimulation. Behavioral Assessment: Depressive-like behaviors were quantified using the forced swim test (FST) and tail suspension test (TST). Anxiety-like behaviors were assessed via the open field test (OFT) in 10 mice (5 in each of the DBS and Sham groups). Circuit Mechanism Analysis: Real-time neural activity was monitored by fiber photometry to assess the activation effect of ACC-DBS on the ACC-BLA circuit. Whole-brain activation patterns were analyzed using C-fos immunohistochemistry to quantify downstream neuronal activity. Electro-ablation Validation: An additional experiment was conducted with an electro-ablation group and a sham stimulation group to verify their effects on depressive-like behaviors. 
RESULTS: Behavioral Analysis: FST showed that immobility times in the CRS_DBS and CRS_Sham groups were significantly higher than in the control group (P < 0.05), but no significant difference was observed between the two groups. No significant differences were found in TST among the groups. OFT results indicated that central zone duration and total distance traveled were significantly lower in the DBS group than in the Sham group (P < 0.05), suggesting that DBS may exacerbate anxiety-like behaviors. In contrast, the immobility time in the electro-ablation group was significantly lower than in the sham stimulation group (P < 0.01). Neural Mechanisms: Fiber photometry confirmed that ACC-DBS specifically activated the ACC-BLA circuit. C-fos staining revealed that DBS significantly enhanced neuronal activity in downstream brain regions of the ACC.
CONCLUSION: Traditional high-frequency ACC-DBS effectively activates target neural circuits but fails to improve depressive-like behaviors and may exacerbate anxiety states by enhancing limbic system activity. In contrast, ACC functional inhibition via electro-ablation demonstrates significant antidepressant effects, offering new directions for optimizing neuromodulation strategies.

Key words: Deep brain stimulation, Depression, Anterior Cingulate Cortex, Electroablation, Fiber photometry

中图分类号: