[1] 柯尊华,王静怡.颈椎病流行病学及发病机理研究进展[J].颈腰痛杂志,2014,35(1):62-64.
[2] 郝东昶,蒋宜伟,宋重东,等.国内外采用手法治疗神经根型颈椎病的研究进展[J].湖南中医杂志,2023,39(8):207-211.
[3] 张靖慧,孙大炜,黄晓琳.颈椎曲度测量方法进展与及临床意义[J].中国康复,2009,24(5):347-349.
[4] 付玏,李克,王梦龙.医学影像互联网产品发展现状及前景展望[J].中国医学计算机成像杂志,2016,22(3):283-285.
[5] 李小雷.人工智能在医学影像图像处理中的研究进展[J].中国医学计算机成像杂志,2023,29(4):454-457.
[6] HINTON GE, OSINDERO S, TEH YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-1554.
[7] 邬超,李佳伟,高明杰,等.深度学习在青少年特发性脊柱侧凸诊疗中应用的研究进展[J].中国脊柱脊髓杂志,2023,33(4):358-362.
[8] 郭春麟.基于深度学习的颈椎X射线图像分割算法研究[D].太原:中北大学,2023.
[9] LECUN Y, BENGIO Y, HINTON G. Deep learning. Nature. 2015;521(7553): 436-444.
[10] LITJENS G, KOOI T, BEJNORDI BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.
[11] YıLMAZ H, ZATERI C, KUSVURAN OZKAN A, et al. Prevalence of adolescent idiopathic scoliosis in Turkey: an epidemiological study. Spine J. 2020;20(6):947-955.
[12] AZIMI P, YAZDANIAN T, BENZEL EC, et al. A Review on the Use of Artificial Intelligence in Spinal Diseases. Asian Spine J. 2020;14(4):543-571.
[13] LANDRIEL F, FRANCHI BC, MOSQUERA C, et al. Artificial Intelligence Assistance for the Measurement of Full Alignment Parameters in Whole-Spine Lateral Radiographs. World Neurosurg. 2024;187:e363-e382.
[14] NGUYEN TP, JUNG JW, YOO YJ, et al. Intelligent Evaluation of Global Spinal Alignment by a Decentralized Convolutional Neural Network. J Digit Imaging. 2022;35(2):213-225.
[15] YEH YC, WENG CH, HUANG YJ, et al. Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Sci Rep. 2021;11(1):7618.
[16] SONG SY, SEO MS, KIM CW, et al. AI-Driven Segmentation and Automated Analysis of the Whole Sagittal Spine from X-ray Images for Spinopelvic Parameter Evaluation. Bioengineering (Basel). 2023; 10(10):1229.
[17] KARHADE AV, THIO QCBS, OGINK PT, et al. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery. 2019;85(1):E83-E91.
[18] CHMELIK J, JAKUBICEK R, WALEK P, et al. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal. 2018;49:76-88.
[19] 欧阳汉强,姜亮,刘晓光,等.人工智能在脊柱外科诊断与治疗中的应用现状和发展趋势[J].中华骨科杂志,2019,39(24):1543-1548.
[20] BERLIN C, ADOMEIT S, GROVER P, et al. Novel AI-Based Algorithm for the Automated Computation of Coronal Parameters in Adolescent Idiopathic Scoliosis Patients: A Validation Study on 100 Preoperative Full Spine X-Rays. Global Spine J. 2024;14(6):1728-1737.
[21] HUSSEIN YY, KHAN MM. Using Artificial Intelligence to Predict the Development of Kyphosis Disease: A Systematic Review. Cureus. 2023; 15(11):e48341.
[22] STINO AM, LORUSSO SJ. Myelopathies Due to Structural Cervical and Thoracic Disease. Continuum (Minneap Minn). 2018;24(2, Spinal Cord Disorders):567-583.
[23] WANG H, LIU Y, ZHAO Y, et al. Feasibility and accuracy of computer-assisted individual drill guide template for minimally invasive lumbar pedicle screw placement trajectory. Injury. 2018;49(3):644-648.
[24] YU Z, ZHANG G, CHEN X, et al. Application of a novel 3D drill template for cervical pedicle screw tunnel design: a cadaveric study. Eur Spine J. 2017;26(9):2348-2356.
[25] 张磊磊. 基于深度学习的颈椎CT图像分割和定位[D].武汉: 华中科技大学,2020.
[26] ZHANG L, WANG H. A novel segmentation method for cervical vertebrae based on PointNet++ and converge segmentation. Comput Methods Programs Biomed. 2021;200:105798.
[27] ZHU Y, LI Y, WANG K, et al. A quantitative evaluation of the deep learning model of segmentation and measurement of cervical spine MRI in healthy adults. J Appl Clin Med Phys. 2024;25(3):e14282.
[28] AL ARIF SMMR, KNAPP K, SLABAUGH G. Fully automatic cervical vertebrae segmentation framework for X-ray images. Comput Methods Programs Biomed. 2018;157:95-111.
[29] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015.
[30] BAE HJ, HYUN H, BYEON Y, et al. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network. Comput Methods Programs Biomed. 2020;184:105119.
[31] 段硕,崔维,张舵,等.神经网络模型自动分割测量颈椎MRI椎间盘及深层伸肌面积的可行性研究[J].中国脊柱脊髓杂志,2021, 31(9):833-840.
[32] ZHANG X, YANG Y, SHEN YW, et al. SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image. Front Physiol. 2022;13:1081441.
[33] DAENZER S, FREITAG S, VON SACHSEN S, et al. VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI. Med Phys. 2014;41(8):082305.
[34] NOZAWA K, MAKI S, FURUYA T, et al. Magnetic resonance image segmentation of the compressed spinal cord in patients with degenerative cervical myelopathy using convolutional neural networks. Int J Comput Assist Radiol Surg. 2023;18(1):45-54.
[35] 侯立宪.基于U型网络的脊髓型颈椎病MRI分割方法的研究[D].桂林:桂林理工大学,2023.
[36] 朱逸峰,赵凯,郭丽,等.基于深度学习模型实现颈椎MR图像上各结构的自动分割[J].放射学实践,2021,36(12):1558-1562.
[37] LEE GW, SHIN H, CHANG MC. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. BMC Neurol. 2022;22(1):147.
[38] 李居朋,王颖慧,李刚.医学图像关键点检测深度学习方法研究与挑战[J].电子学报,2022,50(1):226-237.
[39] 宋璐杰.基于点特征描述的医学颈椎X光图像配准研究[D].北京:北京化工大学,2021.
[40] WANG Y, HUANG L, WU M, et al. Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays. Comput Biol Med. 2022;146:105576.
[41] YAN Y, ZHANG X, MENG Y, et al. Sagittal intervertebral rotational motion: a deep learning-based measurement on flexion-neutral-extension cervical lateral radiographs. BMC Musculoskelet Disord. 2022;23(1):967.
[42] 杨胜,唐超,钟德君.150例健康成人下颈椎矢状位曲度相关影像学参数测量及临床意义[J]. 中国临床解剖学杂志,2020,38(5):549-553+558.
[43] 蒋芳华,林建平,王诗忠. 不同颈椎矢状位参数测量颈椎前凸曲度的比较分析[J].颈腰痛杂志,2022,43(5):707-710.
[44] SCHEER JK, TANG JA, SMITH JS, et al. Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine. 2013; 19(2):141-159.
[45] MIYAZAKI M, HYMANSON HJ, MORISHITA Y, et al. Kinematic analysis of the relationship between sagittal alignment and disc degeneration in the cervical spine. Spine (Phila Pa 1976). 2008; 33(23):E870-E876.
[46] LING FP, CHEVILLOTTE T, LEGLISE A, et al. Which parameters are relevant in sagittal balance analysis of the cervical spine? A literature review. Eur Spine J. 2018;27(Suppl 1):8-15.
[47] 杨云霄,黄承兰,侯俞彤,等.退行性颈椎病矢状位曲度参数与颈肩部肌肉痛阈的相关性[J]. 中国组织工程研究,2024,28(24):3879-3884.
[48] AKBAR M, ALMANSOUR H, DIEBO B, et al. Normal sagittal profile of the cervical spine - must the cervical spine always be lordotic? Orthopade. 2018;47(6):460-466.
[49] 裴帅,姜宏,刘锦涛,等.颈椎曲度与颈椎病严重程度相关性的研究进展[J].中医正骨,2020,32(3):35-38.
[50] LI X, CHEN H, QI X, et al. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans Med Imaging. 2018;37(12):2663-2674.
[51] FUJIMORI T, SUZUKI Y, TAKENAKA S, et al. Development of artificial intelligence for automated measurement of cervical lordosis on lateral radiographs. Sci Rep. 2022;12(1):15732.
[52] WANG C, NI M, TIAN S, et al. Deep learning model for measuring the sagittal Cobb angle on cervical spine computed tomography. BMC Med Imaging. 2023;23(1):196.
[53] 冉宇.两种颈前路手术疗效分析及深度学习下的Cobb角模型构建与软件开发[D].北京:北京中医药大学,2023.
[54] 肖强强.颈椎X线角度测量及不稳定诊断深度学习模型的构建与应用[D].上海:中国人民解放军海军军医大学,2023.
[55] VOGT S, SCHOLL C, GROVER P, et al. Novel AI-Based Algorithm for the Automated Measurement of Cervical Sagittal Balance Parameters. A Validation Study on Pre- and Postoperative Radiographs of 129 Patients. Global Spine J. 2024:21925682241227428.
[56] NAKARAI H, CINA A, JUTZELER C, et al. Automatic Calculation of Cervical Spine Parameters Using Deep Learning: Development and Validation on an External Dataset. Global Spine J. 2023:21925682231205352.
[57] FU S, ZHANG C, YAN X, et al. A New Automated AI-Assisted System to Assess Cervical Disc Herniation. Spine (Phila Pa 1976). 2022;47(16): E536-E544.
[58] 延亚洁,袁细国.基于深度学习的颈椎间盘突出识别方法[J].聊城大学学报(自然科学版),2021,34(1):11-19.
[59] 马少龙.基于深度学习技术-Faster R-CNN对颈脊髓损伤及颈间盘疾病核磁图像的识别检测[D].长春:吉林大学,2020.
[60] SEO G, LEE SJ, PARK DH, et al. Image quality and lesion detectability of deep learning-accelerated T2-weighted Dixon imaging of the cervical spine. Skeletal Radiol. 2023;52(12):2451-2459.
[61] 饶显锋,杨舒文,陈静,等.基于深度学习重建超快速扫描方案用于颈椎MR检查[J].中国医学影像技术,2024,40(6):843-847.
[62] RIAZI ESFAHANI P, GUIRGUS M, MAALOUF M, et al. Development of a Machine Learning-Based Model for Accurate Detection and Classification of Cervical Spine Fractures Using CT Imaging. Cureus. 2023;15(10):e47328.
[63] SMALL JE, OSLER P, PAUL AB, et al. CT Cervical Spine Fracture Detection Using a Convolutional Neural Network. AJNR Am J Neuroradiol. 2021; 42(7):1341-1347.
[64] VOTER AF, LARSON ME, GARRETT JW, et al. Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures. AJNR Am J Neuroradiol. 2021;42(8):1550-1556.
[65] 朱晓龙,黄婧潇,邹殿俊,等.上颈椎损伤诊断及治疗中应用多层螺旋CT结合人工智能模式的效果分析[J].中国临床医生杂志, 2022,50(3):348-350.
[66] GOLLA AK, LORENZ C, BUERGER C, et al. Cervical spine fracture detection in computed tomography using convolutional neural networks. Phys Med Biol. 2023;68(11). doi: 10.1088/1361-6560/acd48b.
[67] VAN DEN WITTENBOER GJ, VAN DER KOLK BYM, NIJHOLT IM, et al. Diagnostic accuracy of an artificial intelligence algorithm versus radiologists for fracture detection on cervical spine CT. Eur Radiol. 2024;34(8):5041-5048.
[68] RUITENBEEK HC, OEI EHG, SCHMAHL BL, et al. Towards clinical implementation of an AI-algorithm for detection of cervical spine fractures on computed tomography. Eur J Radiol. 2024;173:111375.
[69] MURATA K, ENDO K, AIHARA T, et al. Use of residual neural network for the detection of ossification of the posterior longitudinal ligament on plain cervical radiography. Eur Spine J. 2021;30(8): 2185-2190.
[70] MIURA M, MAKI S, MIURA K, et al. Automated detection of cervical ossification of the posterior longitudinal ligament in plain lateral radiographs of the cervical spine using a convolutional neural network. Sci Rep. 2021;11(1):12702.
[71] TAMAI K, TERAI H, HOSHINO M, et al. A deep learning algorithm to identify cervical ossification of posterior longitudinal ligaments on radiography. Sci Rep. 2022;12(1):2113.
[72] OGAWA T, YOSHII T, OYAMA J, et al. Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study. Spine J. 2022;22(6):934-940.
[73] QU Z, DENG B, SUN W, et al. Feng H. A Convolutional Neural Network for Automated Detection of Cervical Ossification of the Posterior Longitudinal Ligament using Magnetic Resonance Imaging. Clin Spine Surg. 2024;37(3):E106-E112.
[74] MAKI S, FURUYA T, YOSHII T, et al. Machine Learning Approach in Predicting Clinically Significant Improvements After Surgery in Patients with Cervical Ossification of the Posterior Longitudinal Ligament. Spine (Phila Pa 1976). 2021;46(24):1683-1689.
[75] MATHEW R, PALATINUS S, PADALA S, et al. Neural networks for classification of cervical vertebrae maturation: a systematic review. Angle Orthod. 2022;92(6):796-804.
[76] CAO L, HE H, HUA F. Current neural networks demonstrate potential in automated cervical vertebral maturation stage classification based on lateral cephalograms. J Evid Based Dent Pract. 2024;24(1):101928.
[77] LI H, CHEN Y, WANG Q, et al. Convolutional neural network-based automatic cervical vertebral maturation classification method. Dentomaxillofac Radiol. 2022;51(6):20220070.
[78] KIM DW, KIM J, KIM T, et al. Prediction of hand-wrist maturation stages based on cervical vertebrae images using artificial intelligence. Orthod Craniofac Res. 2021;24 Suppl 2:68-75.
[79] RADWAN MT, SIN Ç, AKKAYA N, et al. Artificial intelligence-based algorithm for cervical vertebrae maturation stage assessment. Orthod Craniofac Res. 2023;26(3):349-355.
[80] AKAY G, AKCAYOL MA, ÖZDEM K, et al. Deep convolutional neural network-the evaluation of cervical vertebrae maturation. Oral Radiol. 2023;39(4):629-638.
[81] KHAZAEI M, MOLLABASHI V, KHOTANLOU H, et al. Automatic determination of pubertal growth spurts based on the cervical vertebral maturation staging using deep convolutional neural networks. J World Fed Orthod. 2023;12(2):56-63.
[82] ATICI SF, ANSARI R, ALLAREDDY V, et al. Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters. PLoS One. 2022;17(7):e0269198.
[83] TARAJI S, ATICI SF, VIANA G, et al. Novel Machine Learning Algorithms for Prediction of Treatment Decisions in Adult Patients With Class III Malocclusion. J Oral Maxillofac Surg. 2023;81(11):1391-1402.
[84] AMASYA H, CESUR E, YILDIRIM D, et al. Validation of cervical vertebral maturation stages: Artificial intelligence vs human observer visual analysis. Am J Orthod Dentofacial Orthop. 2020;158(6):e173-e179.
[85] WANG KY, SURESH KV, PUVANESARAJAH V, et al. Using Predictive Modeling and Machine Learning to Identify Patients Appropriate for Outpatient Anterior Cervical Fusion and Discectomy. Spine (Phila Pa 1976). 2021;46(10):665-670.
[86] RUDISILL SS, HORNUNG AL, BARAJAS JN, et al. Artificial intelligence in predicting early-onset adjacent segment degeneration following anterior cervical discectomy and fusion. Eur Spine J. 2022;31(8):2104-2114.
[87] GOEDMAKERS CMW, LAK AM, DUEY AH, et al. Deep Learning for Adjacent Segment Disease at Preoperative MRI for Cervical Radiculopathy. Radiology. 2021;301(3):E446.
[88] KHAZANCHI R, BAJAJ A, SHAH RM, et al. Using Machine Learning and Deep Learning Algorithms to Predict Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion. Clin Spine Surg. 2023;36(3):143-149.
[89] KARABACAK M, BHIMANI AD, SCHUPPER AJ, et al. Machine learning models on a web application to predict short-term postoperative outcomes following anterior cervical discectomy and fusion. BMC Musculoskelet Disord. 2024;25(1):401.
[90] KARABACAK M, MARGETIS K. Development of personalized machine learning-based prediction models for short-term postoperative outcomes in patients undergoing cervical laminoplasty. Eur Spine J. 2023;32(11):3857-3867.
[91] KHAN O, BADHIWALA JH, AKBAR MA, et al. Prediction of Worse Functional Status After Surgery for Degenerative Cervical Myelopathy: A Machine Learning Approach. Neurosurgery. 2021;88(3):584-591.
[92] MERALI ZG, WITIW CD, BADHIWALA JH, et al. Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS One. 2019;14(4):e0215133.
[93] SONG J, LI J, ZHAO R, et al. Developing predictive models for surgical outcomes in patients with degenerative cervical myelopathy: a comparison of statistical and machine learning approaches. Spine J. 2024;24(1):57-67.
[94] MOUSTAFA IM, OZSAHIN DU, MUSTAPHA MT, et al. Utilizing machine learning to predict post-treatment outcomes in chronic non-specific neck pain patients undergoing cervical extension traction. Sci Rep. 2024;14(1):11781.
[95] LU K, TU Y, SU S, et al. Machine learning application for prediction of surgical site infection after posterior cervical surgery. Int Wound J. 2024;21(4):e14607.
[96] OKIMATSU S, MAKI S, FURUYA T, et al. Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning. J Clin Neurosci. 2022;96:74-79.
[97] ZHANG Z, MAO S, COYLE J, et al. Automatic annotation of cervical vertebrae in videofluoroscopy images via deep learning. Med Image Anal. 2021;74:102218.
[98] OKITA Y, HIRANO T, WANG B, et al. Automatic evaluation of atlantoaxial subluxation in rheumatoid arthritis by a deep learning model. Arthritis Res Ther. 2023;25(1):181.
[99] JARDON M, TAN ET, CHAZEN JL, et al. Deep-learning-reconstructed high-resolution 3D cervical spine MRI for foraminal stenosis evaluation. Skeletal Radiol. 2023;52(4):725-732.
[100] MARAŞ Y, TOKDEMIR G, ÜRETEN K, et al. Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods. Jt Dis Relat Surg. 2022;33(1):93-101.
[101] HWANG UJ, KWON OY, KIM JH, et al. Machine learning models for classifying non-specific neck pain using craniocervical posture and movement. Musculoskelet Sci Pract. 2024;71:102945. |