[1] HEBOYAN A, AVETISYAN A, KAROBARI MI, et al. Tooth root resorption: A review. Sci Prog. 2022;105(3):368504221109217.
[2] MURRAY PE. Review of guidance for the selection of regenerative endodontics, apexogenesis, apexification, pulpotomy, and other endodontic treatments for immature permanent teeth. Int Endod J. 2023;56 Suppl 2:188-199.
[3] SHAH A, PEACOCK R, ELIYAS S. Pulp therapy and root canal treatment techniques in immature permanent teeth: an update. Br Dent J. 2022;232(8):524-530.
[4] LIU Q, GAO Y, HE J. Stem Cells from the Apical Papilla (SCAPs): Past, Present, Prospects, and Challenges. Biomedicines. 2023;11(7):2047.
[5] DRIESEN RB, GERVOIS P, VANGANSEWINKEL T, et al. Unraveling the Role of the Apical Papilla During Dental Root Maturation. Front Cell Dev Biol. 2021;9:665600.
[6] GAO X, RUZBARSKY JJ, LAYNE JE, et al. Stem Cells and Bone Tissue Engineering. Life (Basel). 2024;14(3):287.
[7] KHORKOVA O, STAHL J, JOJI A, et al. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov. 2023;18(9): 1011-1029.
[8] BRIDGES MC, DAULAGALA AC, KOURTIDIS A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045.
[9] CHEN Z, ZHANG K, QIU W, et al. Genome-wide identification of long noncoding RNAs and their competing endogenous RNA networks involved in the odontogenic differentiation of human dental pulp stem cells. Stem Cell Res Ther. 2020;11(1):114.
[10] GU Y, BAI Y. LncRNA MALAT1 promotes osteogenic differentiation through the miR-93-5p/SMAD5 axis. Oral Dis. 2024;30(4):2398-2409.
[11] ZHANG Z, HE Q, YANG S, et al. Mechanical force-sensitive lncRNA SNHG8 inhibits osteogenic differentiation by regulating EZH2 in hPDLSCs. Cell Signal. 2022;93: 110285.
[12] TAKEI Y, ISHIKAWA S, TOKINO T, et al. Isolation of a novel TP53 target gene from a colon cancer cell line carrying a highly regulated wild-type TP53 expression system. Genes Chromosomes Cancer. 1998;23(1):1-9.
[13] LU Q, GUO Q, XIN M, et al. LncRNA TP53TG1 Promotes the Growth and Migration of Hepatocellular Carcinoma Cells via Activation of ERK Signaling. Noncoding RNA. 2021; 7(3):52.
[14] LU Q, XIN M, GUO Q, et al. Knockdown of lncRNA TP53TG1 Enhances the Efficacy of Sorafenib in Human Hepatocellular Carcinoma Cells. Noncoding RNA. 2022; 8(4):61.
[15] ZHANG Y, YANG H, DU Y, et al. Long noncoding RNA TP53TG1 promotes pancreatic ductal adenocarcinoma development by acting as a molecular sponge of microRNA-96. Cancer Sci. 2019;110(9):2760-2772.
[16] LIAO D, LIU X, YUAN X, et al. Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle. 2022;21(6):572-584.
[17] FERRER J, DIMITROVA N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024;25(5):396-415.
[18] 代子寒,王明浩,王胜朝,等. lncRNA TP53TG1在牙髓中的表达和对牙髓干细胞转录炎症因子的影响[J].空军军医大学学报,2024,45(7):833-837.
[19] DU L, YANG P, GE S. Isolation and characterization of human gingiva-derived mesenchymal stem cells using limiting dilution method. J Dent Sci. 2016;11(3): 304-314.
[20] LIU F, WANG X, XU J, et al. Preliminary study on the mechanism by which exosomes derived from human exfoliated deciduous teeth improve the proliferation and osteogenic inhibitory effect of glucocorticoid-induced BMSCs. Gene. 2024;923:148575.
[21] 甄蕾,刘宏伟.人牙周膜干细胞的初步鉴定及体外成骨诱导[J].口腔颌面外科杂志,2008,18(5):318-322.
[22] KUMAR A, RAIK S, SHARMA P, et al. Primary Culture of Dental Pulp Stem Cells. J Vis Exp. 2023;(195):e65223.
[23] SHIELDS EJ, PETRACOVICI AF, BONASIO R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J. 2019;476(7):1083-1104.
[24] GEISLER S, COLLER J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699-712.
[25] YANG L, LIN C, LIU W, et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011;147(4):773-788.
[26] YU S, GUO J, YANG D, et al. The ATF4-regulated LncRNA MALAT1 promotes odontoblastic differentiation of human dental pulp stem cells via histone demethylase JMJD3: An in vitro study. Int Endod J. 2024;57(1):50-63.
[27] YANG C, XU X, LIN P, et al. Overexpression of long noncoding RNA MCM3AP-AS1 promotes osteogenic differentiation of dental pulp stem cells via miR-143-3p/IGFBP5 axis. Hum Cell. 2022;35(1):150-162.
[28] WANG D, ZHU N, XIE F, et al. Long non-coding RNA IGFBP7-AS1 promotes odontogenic differentiation of stem cells from human exfoliated deciduous teeth through autophagy: An in vitro study. Arch Oral Biol. 2022;141:105492.
[29] TU S, CHEN Y, FENG Y, et al. lncRNA CYTOR Facilitates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating SOX11 via Sponging miR-6512-3p. Stem Cells Int. 2023;2023:5671809.
[30] SUFIANOV A, BEILERLI A, BEGLIARZADE S, et al. The role of noncoding RNAs in the osteogenic differentiation of human periodontal ligament-derived cells. Noncoding RNA Res. 2022;8(1):89-95.
[31] ARORA S, COOPER PR, RATNAYAKE JT, et al. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J. 2022;55 Suppl 1(Suppl 1):3-13.
[32] LIM D, WU KC, LEE A, et al. DSPP dosage affects tooth development and dentin mineralization. PLoS One. 2021;16(5):e0250429.
[33] SUZUKI S, HARUYAMA N, NISHIMURA F, et al. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol. 2012;57(9):1165-1175.
[34] CAMILLERI S, MCDONALD F. Runx2 and dental development. Eur J Oral Sci. 2006; 114(5):361-373.
[35] VIJAYKUMAR A, DYRKACZ P, VIDOVIC-ZDRILIC I, et al. Expression of BSP-GFPtpz Transgene during Osteogenesis and Reparative Dentinogenesis. J Dent Res. 2020; 99(1):89-97.
[36] ZHANG W, YELICK PC. Tooth Repair and Regeneration: Potential of Dental Stem Cells. Trends Mol Med. 2021;27(5):501-511.
[37] WEN X, JIAO L, TAN H. MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci. 2022;23(3):1464.
[38] LAV R, KRIVANEK J, ANTHWAL N, et al. Wnt signaling from Gli1-expressing apical stem/progenitor cells is essential for the coordination of tooth root development. Stem Cell Reports. 2023;18(4):1015-1029.
[39] TAKIMOTO K, WIDBILLER M, DIOGENES A. Expression of Toll-like Receptors in Stem Cells of the Apical Papilla and Its Implication for Regenerative Endodontics. Cells. 2023;12(20):2502.
[40] LI Z, GE X, LU J, et al. MiR-141-3p regulates proliferation and senescence of stem cells from apical papilla by targeting YAP. Exp Cell Res. 2019;383(2):111562.
[41] JIN L, CAO Y, YU G, et al. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway. Cell Mol Biol Lett. 2017;22:14.
[42] ZHAO Q, REN H, WANG N, et al. NOTUM plays a bidirectionally modulatory role in the odontoblastic differentiation of human stem cells from the apical papilla through the WNT/β-catenin signaling pathway. Arch Oral Biol. 2024;160:105896.
[43] WANG Y, LU Y, LI Z, et al. Oestrogen receptor α regulates the odonto/osteogenic differentiation of stem cells from apical papilla via ERK and JNK MAPK pathways. Cell Prolif. 2018;51(6):e12485.
[44] PANG X, ZHUANG Y, LI Z, et al. Intermittent Administration of Parathyroid Hormone Enhances Odonto/Osteogenic Differentiation of Stem Cells from the Apical Papilla via JNK and P38 MAPK Pathways. Stem Cells Int. 2020;2020:5128128.
[45] LIU Z, LIN Y, FANG X, et al. Epigallocatechin-3-Gallate Promotes Osteo-/Odontogenic Differentiation of Stem Cells from the Apical Papilla through Activating the BMP-Smad Signaling Pathway. Molecules. 2021;26(6):1580.
[46] CHENG Q, ZENG K, KANG Q, et al. The Antimicrobial Peptide LL-37 Promotes Migration and Odonto/Osteogenic Differentiation of Stem Cells from the Apical Papilla through the Akt/Wnt/β-catenin Signaling Pathway. J Endod. 2020;46(7): 964-972.
[47] TANAKA Y, SONODA S, YAMAZA H, et al. Acetylsalicylic Acid Treatment and Suppressive Regulation of AKT Accelerate Odontogenic Differentiation of Stem Cells from the Apical Papilla. J Endod. 2019;45(5):591-598.e6.
[48] WANG Z, CHEN C, SUN L, et al. Fibroblast growth factor 2 promotes osteo/odontogenic differentiation in stem cells from the apical papilla by inhibiting PI3K/AKT pathway. Sci Rep. 2024;14(1):19354.
[49] TANAKA Y, SONODA S, YAMAZA H, et al. Suppression of AKT-mTOR signal pathway enhances osteogenic/dentinogenic capacity of stem cells from apical papilla. Stem Cell Res Ther. 2018;9(1):334.
[50] CHEN X, LIU JY, YUE L, et al. Phosphatidylinositol 3-Kinase and Protein Kinase C Signaling Pathways Are Involved in Stromal Cell-derived Factor-1α-mediated Transmigration of Stem Cells from Apical Papilla. J Endod. 2016;42(7): 1076-1081. |