中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (24): 5158-5170.doi: 10.12307/2025.702
• 组织构建综述 tissue construction review • 上一篇 下一篇
官镇洁1,2,李文媛1,2,耿 瑞1,王 莹1
收稿日期:
2024-08-14
接受日期:
2024-09-25
出版日期:
2025-08-28
发布日期:
2025-01-24
通讯作者:
王莹,博士,教授,牡丹江医科大学神经组织工程研究所,黑龙江省牡丹江市 157011
作者简介:
官镇洁,女,2000年生,四川省资中县人,汉族,牡丹江医科大学在读硕士,主要从事脊髓和周围神经损伤修复研究工作。
基金资助:
Guan Zhenjie1, 2, Li Wenyuan1, 2, Geng Rui1, Wang Ying1
Received:
2024-08-14
Accepted:
2024-09-25
Online:
2025-08-28
Published:
2025-01-24
Contact:
Wang Ying, PhD, Professor, Institute of Neural tissue Engineering, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China
About author:
Guan Zhenjie, Master’s candidate, Institute of Neural tissue Engineering, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang Province, China; Mudanjiang Collaborative Innovation Center for the Development and Application of Northern Medicinal Resources, Mudanjiang 157011, Heilongjiang Province, China
Supported by:
摘要:
文题释义:
脊髓损伤:是一种破坏性的神经损伤疾病,会导致严重的运动、感觉和自主神经功能障碍。
轴突再生:轴突是一种特殊的细胞结构,使神经元之间相互联系,轴突损伤会导致严重的功能障碍。轴突再生是脊髓损伤后功能重建的第一步也是最重要的一步,对于治疗许多神经损伤和神经退行性疾病至关重要。
背景:目前治疗脊髓损伤后皮质脊髓束策略主要聚焦于运动康复治疗、药物治疗、经颅磁电刺激、内源性调控如转录因子及特定信号通路介导,其中转录因子及其特定信号通路是调控脊髓损伤后皮质脊髓束轴突再生的关键因素,已有大量临床前研究证实转录因子及其信号通路相互协同对脊髓损伤后皮质脊髓束神经元轴突再生具有显著调控效果。因此探索基于靶向转录因子及特定信号通路新的联合治疗脊髓损伤策略具有广阔的应用前景。
目的:归纳转录因子及其信号通路对脊髓损伤后皮质脊髓束神经元轴突再生的调控作用及其介导的潜在分子机制,并探讨基于靶向转录因子及其信号通路为核心的联合治疗策略在脊髓损伤后皮质脊髓束神经可塑性的应用,以期为治疗脊髓损伤提供新的联合治疗策略。
方法:以“脊髓损伤,轴突再生,转录因子,信号通路,皮质脊髓束,中枢神经系统,协同作用,神经保护”为中文检索词,以“spinal cord injury,axon regeneration,transcription factors,signaling pathway,Corticospinal tract,Central Nervous System,Synergistic system,Neuroprotective system”为英文检索词,检索万方数据知识服务平台、Web of Science及PubMed数据库建库时间至2024年9月期间的相关文献,最终纳入101篇文章进行分析和总结。
结果与结论:①概述了脊髓损伤后的皮质脊髓束轴突再生的生物特性及干预策略,解析了聚焦脊髓损伤后的皮质脊髓束的原因,阐明了脊髓损伤后皮质脊髓束的反应以及再生的可能性。②研究中以Krüppel样因子6、Krüppel样因子7及神经元限制性沉默因子等为核心的转录因子联合调控策略能够显著促进脊髓损伤后皮质脊髓束神经元轴突再生。③经磷脂酰肌醇3激酶-蛋白激酶 B-雷帕霉素靶蛋白信号通路、Wnt5a通路是转录因子调控皮质脊髓束神经元轴突再生的经典信号通路,通过联合治疗策略更能够有效促进脊髓损伤后皮质脊髓束神经元轴突再生及功能重建。④全面详细讨论了关于转录因子及特定信号通路的联合治疗策略,诸如Krüppel样因子6联合信号转导及转录激活因子3、Krüppel样因子7联合SOX11转录因子、联合抑制磷酸酶和张力蛋白同源物及神经元限制性沉默因子等策略,发挥协同效应,促进脊髓损伤后皮质脊髓束神经元轴突再生的效果均显著优于单独治疗,有效改善功能恢复,能够为未来治疗脊髓损伤后皮质脊髓束神经元轴突再生提供可参考的方案;但其具体机制仍待进一步研究,而且目前联合策略仅在动物模型上广泛应用,未结合临床实际。⑤基于转录因子及特定信号通路联合治疗策略对脊髓损伤后皮质脊髓束神经元轴突再生具有显著的治疗作用,未来需进一步精准探索联合调控分子机制,以期为脊髓损伤的康复和功能重建提供有效的联合治疗策略。
https://orcid.org/0000-0003-4075-781X(王莹)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
官镇洁, 李文媛, 耿 瑞, 王 莹. 脊髓损伤后皮质脊髓束调控机制:靶向转录因子及信号通路联合治疗策略[J]. 中国组织工程研究, 2025, 29(24): 5158-5170.
Guan Zhenjie, Li Wenyuan, Geng Rui, Wang Ying. Regulatory mechanisms of the corticospinal tract after spinal cord injury: combined therapeutic strategies targeting transcription factors and signaling pathways [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5158-5170.
[1] HACHMANN JT, YOUSAK A, WALLNER JJ, et al. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol. 2021;126(6):1843-1859. [2] IZZY S. Traumatic spinal cord injury. Continuum (Minneap Minn). 2024; 30(1):53-72. [3] JIANG B, SUN D, SUN H, et al. Prevalence, incidence, and external causes of traumatic spinal cord injury in china: a nationally representative cross-sectional survey. Front Neurol. 2021;12:784647. [4] HU X, XU W, REN Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):245. [5] 王淑影,王莹,李艺,等.脊髓损伤后神经元轴突内在再生能力调控策略的研究进展[J].医学综述,2024,30(8):897-901, 907. [6] WAGH K, STAVREVA DA, UPADHYAYA A, et al. Transcription factor dynamics: one molecule at a time. Annu Rev Cell Dev Biol. 2023;39:277-305. [7] FINKEL Z, CAI L. Transcription factors promote neural regeneration after spinal cord injury. Neural Regen Res. 2022;17(11):2439-2440. [8] LU F, LIONNET T. Transcription factor dynamics. Cold Spring Harb Perspect Biol. 2021;13(11):a040949. [9] WEIDEMÜLLER P, KHOLMATOV M, PETSALAKI E, et al. Transcription factors: bridge between cell signaling and gene regulation. Proteomics. 2021;21(23-24):e2000034. [10] GORDON MD, NUSSE R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281(32): 22429-22433. [11] MCCOUCH GP, AUSTIN GM, LIU CN, et al. Sprouting as a cause of spasticity. J Neurophysiol. 1958;21(3):205-216. [12] FOUAD K, PEDERSEN V, SCHWAB ME, et al. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol. 2001;11(22):1766-1770. [13] BAREYRE FM, KERSCHENSTEINER M, RAINETEAU O, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7(3):269-277. [14] YLERA B, ERTüRK A, HELLAL F, et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol. 2009;19(11):930-936. [15] DAVID S, AGUAYO AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981; 214(4523):931-933. [16] GOLDBERG JL, KLASSEN MP, HUA Y, et al. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science. 2002; 296(5574): 1860-1864. [17] 戴家峰,王丽昭,韩齐,等.脊髓损伤重塑皮质脊髓运动神经元突触输入的作用[J].中国组织工程研究,2024,28(25):4054-4059. [18] HIROTA R, SASAKI M, KATAOKA-SASAKI Y, et al. Enhanced network in corticospinal tracts after infused mesenchymal stem cells in spinal cord injury. J Neurotrauma. 2022;39(23-24):1665-1677. [19] MA J, LI J, WANG X, et al. GDNF-loaded polydopamine nanoparticles-based anisotropic scaffolds promote spinal cord repair by modulating inhibitory microenvironment. Adv Healthc Mater. 2023; 12(8):e2202377. [20] HE J, ZHANG F, PAN Y, et al. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Hum Brain Mapp. 2023;44(17):6055-6073. [21] Bareyre fm, kerschensteiner m, misgeld t, et al. Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med. 2005;11(12):1355-1360. [22] LIU K, LU Y, LEE JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13(9):1075-1081. [23] SAINI R, PAHWA B, AGRAWAL D, et al. Efficacy and outcome of bone marrow derived stem cells transplanted via intramedullary route in acute complete spinal cord injury - A randomized placebo controlled trial. J Clin Neurosci. 2022;100:7-14. [24] JO HJ, KIZZIAR E, SANGARI S, et al. Multisite hebbian plasticity restores function in humans with spinal cord injury. Ann Neurol. 2023;93(6):1198-1213. [25] ANDO M, TAMAKI T, MAIO K, et al. The muscle evoked potential after epidural electrical stimulation of the spinal cord as a monitor for the corticospinal tract: studies by collision technique and double train stimulation. J Clin Monit Comput. 2022;36(4):1053-1067. [26] PANG QM, CHEN SY, XU QJ, et al. Neuroinflammation and scarring after spinal cord injury: therapeutic roles of MSCs on inflammation and glial sca. Front Immunol. 2021;12:751021. [27] ZHANG C, KANG J, ZHANG X, et al. Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed Pharmacother. 2022;153:113500. [28] VENKATESH I, BLACKMORE MG. Selecting optimal combinations of transcription factors to promote axon regeneration: Why mechanisms matter. Neurosci Lett. 2017;652:64-73. [29] LIN BS, ZHANG Z, PENG CW, et al. Effectiveness of repetitive transcranial magnetic stimulation combined with transspinal electrical stimulation on corticospinal excitability for individuals with incomplete spinal cord injury: a pilot study. IEEE Trans Neural Syst Rehabil Eng. 2023;31:4790-4800. [30] KANEKO N, SASAKI A, YOKOYAMA H, et al. Changes in corticospinal and spinal reflex excitability through functional electrical stimulation with and without observation and imagination of walking. Front Hum Neurosci. 2022;16:994138. [31] WOODHEAD A, RAINER C, HILL J, et al. Corticospinal and spinal responses following a single session of lower limb motor skill and resistance training. Eur J Appl Physiol. 2024;124(8):2401-2416. [32] LIU JL, WANG S, CHEN ZH, et al. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection. Front Immunol. 2023;14: 1153516. [33] MAYNARD G, KANNAN R, LIU J, et al. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol. 2023;22(8): 672-684. [34] VENKATESH I, MEHRA V, WANG Z, et al. Co-occupancy identifies transcription factor co-operation for axon growth. Nat Commun. 2021; 12(1):2555. [35] SONG F, LI S, DAI X, et al. Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas. Mol Omics. 2023;19(2):150-161. [36] LI J, YU D, HE C, et al. KLF6 alleviates hepatic ischemia-reperfusion injury by inhibiting autophagy. Cell Death Dis. 2023;14(7):393. [37] WANG Z, MEHRA V, SIMPSON M T, et al. KLF6 and STAT3 co-occupy regulatory DNA and functionally synergize to promote axon growth in CNS neurons. Sci Rep. 2018;8(1):12565. [38] KRAMER AA, OLSON GM, CHAKRABORTY A, et al. Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment. Exp Neurol. 2021;339:113644. [39] LIN T, CHEN Y, ZHANG Y, et al. Transcriptional control of chicken KLF7 promoter in preadipocytes. Acta Biochim Biophys Sin (Shanghai). 2021; 53(2):149-159. [40] LI WY, ZHU GY, YUE WJ, et al. KLF7 overexpression in bone marrow stromal stem cells graft transplantation promotes sciatic nerve regeneration. J Neural Eng. 2019;16(5):056011. [41] LI WY, WANG Y, ZHAI FG, et al. AAV-KLF7 Promotes descending propriospinal neuron axonal plasticity after spinal cord injury. Neural Plast. 2017;2017: 1621629. [42] TANAKA H, YAMASHITA T, YACHI K, et al. Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience. 2004;127(1):155-164. [43] PAN D, LI Y, YANG F, et al. Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury. J Neuroinflammation. 2021;18(1):172. [44] WEI Y, ANDREWS MR. Advances in chondroitinase delivery for spinal cord repair. J Integr Neurosci. 2022;21(4):118. [45] WANG Z, WINSOR K, NIENHAUS C, et al. Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury. Neurobiol Dis. 2017;99:24-35. [46] TSANG SM, OLIEMULLER E, HOWARD BA. Regulatory roles for SOX11 in development, stem cells and cancer. Semin Cancer Biol. 2020;67(Pt 1):3-11. [47] XU AK, GONG Z, HE YZ, et al. Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury. J Zhejiang Univ Sci B. 2019;20(3):205-218. [48] VENKATESH I, MEHRA V, WANG Z, et al. Developmental chromatin restriction of pro-growth gene networks acts as an epigenetic barrier to axon regeneration in cortical neurons. Dev Neurobiol. 2018;78(10):960-977. [49] NASSAR A, SATARKER S, GURRAM PC, et al. Repressor element-1 binding transcription factor (REST) as a possible epigenetic regulator of neurodegeneration and microRNA-based therapeutic strategies. Mol Neurobiol. 2023;60(10):5557-5577. [50] SU XJ, SHEN BD, WANG K, et al. Roles of the neuron-restrictive silencer factor in the pathophysiological process of the central nervous system. Front Cell Dev Biol. 2022;10:834620. [51] CHENG Y, YIN Y, ZHANG A, et al. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun. 2022;13(1):4418. [52] OH YM, MAHAR M, EWAN EE, et al. Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc Natl Acad Sci U S A. 2018;115(52):E12417-E12426. [53] WEI X, LUO L, CHEN J. Roles of mTOR signaling in tissue regeneration. Cells. 2019;8(9):1075. [54] YAO R, REN L, WANG S, et al. Euxanthone inhibits traumatic spinal cord injury via anti-oxidative stress and suppression of p38 and PI3K/Akt signaling pathway in a rat model. Transl Neurosci. 2021;12(1):114-126. [55] 易凌荣,谭波涛,刘媛,等.联合激活mTOR和STAT信号通路对脊髓损伤小鼠轴突再生及运动功能的影响[J].解放军医学杂志, 2022,47(1): 12-19. [56] CAMPION TJ 3RD, SHEIKH IS, SMIT RD, et al. Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Exp Neurol. 2022;349:113961. [57] ZHANG Z, LIN BS, PENG CW, et al. Design of a novel paired associative nerve stimulation system and treatment strategy for incomplete spinal cord injury: a preliminary study. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1341-1349. [58] CHEN Y, LI D, LI N, et al. Role of nerve signal transduction and neuroimmune crosstalk in mediating the analgesic effects of acupuncture for neuropathic pain. Front Neurol. 2023;14:1093849. [59] WANG MM, ZHANG M, FENG YS, et al. Electroacupuncture inhibits neuronal autophagy and apoptosis via the PI3K/AKT pathway following ischemic stroke. Front Cell Neurosci. 2020;14:134. [60] ZHANG Y, YIN YL, JIN ZY, et al. Electroacupuncture activates neuroplasticity in the motor cortex and corticospinal tract via the mTOR pathway in a rat P-MCAO model. Biomed Res Int. 2022;2022:3470685. [61] WAN L, WANG Y, LI J, et al. Inhibition of the AKT/mTOR pathway negatively regulates PTEN expression via miRNAs. Acta Biochim Biophys Sin (Shanghai). 2022;54(11):1637-1647. [62] LUO X, PARK KK. Neuron-intrinsic inhibitors of axon regeneration: PTEN and SOCS3. Int Rev Neurobiol. 2012;105:141-173. [63] DANILOV CA, STEWARD O. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol. 2015;266:147-160. [64] NAKAMURA Y, UENO M, NIEHAUS JK, et al. Modulation of both intrinsic and extrinsic factors additively promotes rewiring of corticospinal circuits after spinal cord injury. J Neurosci. 2021;41(50):10247-10260. [65] WALKER EC, TRUONG K, MCGREGOR NE, et al. Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. Elife. 2020;9:e56666. [66] GEOFFROY CG, MEVES JM, KIM HJM, et al. Targeting PTEN but not SOCS3 resists an age-dependent decline in promoting axon sprouting. iScience. 2022;25(11):105383. [67] PAN L, YI L, LIU Y, et al. Effects of task-based rehabilitative training combined with PTEN/SOCS3 coinhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice. Neurosci Lett. 2023;800:137121. [68] PAN L, TAN B, TANG W, et al. Combining task-based rehabilitative training with PTEN inhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice. Behav Brain Res. 2021;405:113197. [69] BARZEGAR BEHROOZ A, TALAIE Z, JUSHEGHANI F, et al. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int J Mol Sci. 2022;23(3):1353. [70] KEREKES K, TREXLER M, BÁNYAI L, et al. Wnt inhibitory factor 1 binds to and inhibits the activity of sonic hedgehog. Cells. 2021;10(12):3496. [71] CHENG P, LIAO HY, ZHANG HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma. 2022;25:101760. [72] LIU Y, SHI J, LU CC, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci. 2005;8(9):1151-1159. [73] ZOU Y. Inter-growth cone communication mediated by planar cell polarity pathway in axon guidance. Dev Biol. 2022;490:50-52. [74] KIKUCHI A, YAMAMOTO H, SATO A, et al. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf). 2012;204(1):17-33. [75] LI L, HUTCHINS BI, KALIL K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci. 2009;29(18):5873-5883. [76] LIU Y, WANG X, LU CC, et al. Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J Neurosci. 2008;28(33):8376-8382. [77] MIYASHITA T, KODA M, KITAJO K, et al. Wnt-Ryk signaling mediates axon growth inhibition and limits functional recovery after spinal cord injury. J Neurotrauma. 2009;26(7):955-964. [78] YU F, WENG J, YUAN YS, et al. Wnt5a affects schwann cell proliferation and regeneration via Wnt/c-Jun and PTEN signaling pathway. Chin Med J (Engl). 2018;131(21):2623-2625. [79] YANG H, LIANG C, LUO J, et al. Transplantation of Wnt5a-modified bone marrow mesenchymal stem cells promotes recovery after spinal cord injury via the PI3K/AKT pathway. Mol Neurobiol. 2024. doi:10.1007/s12035-024-04248-8. [80] GONZÁLEZ P, GONZÁLEZ-FERNáNDEZ C, JAVIER RODRÍGUEZ F. Effects of Wnt5a overexpression in spinal cord injury. J Cell Mol Med. 2021;25(11): 5150-5163. [81] GRIFFIN JM, BRADKE F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med. 2020;12(3):e11505. [82] WATHEN CA, GHENBOT YG, OZTURK AK, et al. Porcine models of spinal cord injury. Biomedicines. 2023;11(8):2202. [83] SAWADA M, YOSHINO-SAITO K, NINOMIYA T, et al. Reorganization of corticospinal projections after prominent recovery of finger dexterity from partial spinal cord injury in macaque monkeys. eNeuro. 2023;10(8): ENEURO.0209-23.2023. [84] RAZA SHA, KHAN R, CHENG G, et al. RNA-Seq reveals the potential molecular mechanisms of bovine KLF6 gene in the regulation of adipogenesis. Int J Biol Macromol. 2022;195:198-206. [85] MAO Y, CHEN Y, ZHANG Z. Molecular function of Krüppel-like factor 7 in biology. Acta Biochim Biophys Sin (Shanghai). 2023;55(5):713-725. [86] LI T, ZHAO X, DUAN J, et al. Targeted inhibition of STAT3 in neural stem cells promotes neuronal differentiation and functional recovery in rats with spinal cord injury. Exp Ther Med. 2021;22(1):711. [87] AL-JAWAHIRI R, STOKES L, SMITH H, et al. Short report: behavioural characterisation of SOX11 syndrome. Res Dev Disabil. 2023;143:104623. [88] VEVERKA P, BROM T, JANOVIČ T, et al. Electron microscopy reveals toroidal shape of master neuronal cell differentiator REST - RE1-silencing transcription factor. Comput Struct Biotechnol J. 2023;21:731-741. [89] SUN X, HUANG L Y, PAN H X, et al. Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating PI3K/AKT/mTOR pathway. Neural Regen Res. 2023;18(5):1067-1075. [90] MANNING BD, TOKER A. AKT/PKB Signaling: navigating the network. Cell. 2017;169(3):381-405. [91] PHILIPPE L, VAN DEN ELZEN AMG, WATSON MJ, et al. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5’ TOP motifs. Proc Natl Acad Sci U S A. 2020;117(10):5319-5328. [92] BLANCO DB, CHAPMAN NM, RAYNOR JL, et al. PTEN directs developmental and metabolic signaling for innate-like T cell fate and tissue homeostasis. Nat Cell Biol. 2022;24(11):1642-1654. [93] MILLER KM, MARFULL-OROMí P, ZOU Y. Characterization of axon guidance phenotypes in Wnt/PCP mutant mice. Methods Mol Biol. 2022;2438:277-286. [94] BOIDO M, VERCELLI A. Genes and miRNAs as hurdles and promoters of corticospinal tract regeneration in spinal cord injury. Front Cell Dev Biol. 2021;9:748911. [95] KARAMIAN BA, SIEGEL N, NOURIE B, et al. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J Orthop Traumatol. 2022;23(1):2. [96] ZIPSER CM, CRAGG JJ, GUEST JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol. 2022;21(7):659-670. [97] ZHU B, GU G, REN J, et al. Schwann cell-derived exosomes and methylprednisolone composite patch for spinal cord injury repair. ACS Nano. 2023;17(22):22928-22943. [98] KISS BIMBOVA K, BACOVA M, KISUCKA A, et al. Activation of three major signaling pathways after endurance training and spinal cord injury. Mol Neurobiol. 2022;59(2):950-967. [99] TEDESCHI A, POPOVICH PG. The Application of omics technologies to study axon regeneration and CNS repair. F1000Res. 2019;8:F1000 Faculty Rev-311. [100] FENG T, ZHAO C, RAO JS, et al. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience. 2023;26(6):106784. [101] WANG Z, DUAN H, HAO F, et al. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol. 2023;220:102375. |
[1] | 陈伊娴, 陈 晨, 卢立恒, 汤锦鹏, 于晓巍. 雷公藤甲素治疗骨关节炎的网络药理学分析与实验验证[J]. 中国组织工程研究, 2026, 30(4): 805-815. |
[2] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[3] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[4] | 艾克帕尔·艾尔肯, 陈晓涛, 吾凡别克·巴合提. 成骨诱导人牙周膜干细胞来源外泌体促进炎症微环境下人牙周膜干细胞成骨分化[J]. 中国组织工程研究, 2025, 29(7): 1388-1394. |
[5] | 张昊军, 李泓毅, 张 辉, 陈浩然, 张力中, 耿 杰, 侯传东, 于 琦, 贺培凤, 贾金鹏, 卢学春. 间充质细胞源性骨肉瘤中关键分子标志物鉴定及药物敏感性分析[J]. 中国组织工程研究, 2025, 29(7): 1448-1456. |
[6] | 吕丽婷, 于 霞, 张金梅, 高巧婧, 刘仁凡, 李 梦, 王 璐. 脑衰老与外泌体研究进程及现状的文献计量学分析[J]. 中国组织工程研究, 2025, 29(7): 1457-1465. |
[7] | 孙玉婷, 吴家媛, 张 剑. 影响牙髓干细胞成骨及成牙本质分化的相关物理因素及作用机制[J]. 中国组织工程研究, 2025, 29(7): 1531-1540. |
[8] | 喻 婷, 吕冬梅, 邓 浩, 孙 涛, 程 钎. 淫羊藿苷预处理增强人牙周膜干细胞对M1型巨噬细胞的影响[J]. 中国组织工程研究, 2025, 29(7): 1328-1335. |
[9] | 赵瑞华, 陈思娴, 郭 杨, 石 磊, 吴承杰, 吴 毛, 杨光露, 张昊恒, 马 勇. 温肾通督方促进小鼠脊髓损伤的修复[J]. 中国组织工程研究, 2025, 29(6): 1118-1126. |
[10] | 郑 琳, 靳文君, 罗珊珊, 黄 芮, 王 杰, 程余婷, 安哲庆, 熊 玥, 巩仔鹏, 廖 健. 杜仲促进去势大鼠牙槽骨成骨的作用[J]. 中国组织工程研究, 2025, 29(6): 1159-1167. |
[11] | 张德宝, 王 鹏, 李 琨, 张少杰, 李志军, 李树文, 吴一民. 自体黄韧带干预下兔硬膜外纤维瘢痕的形成[J]. 中国组织工程研究, 2025, 29(6): 1168-1175. |
[12] | 姬慧慧, 蒋 旭, 张志敏, 邢运虹, 王亮亮, 李 娜, 宋雨庭, 罗旭光, 崔慧林, 曹锡梅. SR9009联合吲哚丙酸通过核因子κB信号通路减轻C2C12成肌细胞的炎症反应[J]. 中国组织工程研究, 2025, 29(6): 1220-1229. |
[13] | 何 波, 陈 文, 马岁录, 何志军, 宋 渊, 李金鹏, 刘 涛, 魏晓涛, 王威威, 谢 婧. 皮瓣缺血再灌注损伤的发病机制及治疗进展[J]. 中国组织工程研究, 2025, 29(6): 1230-1238. |
[14] | 陈伊琳, 蒋晓波, 屈红林, 刘瑞莲. GSK3/Nrf2调控的生物节律在机体衰老中的规律[J]. 中国组织工程研究, 2025, 29(6): 1257-1264. |
[15] | 张文华, 李 荀, 张伟超, 李欣颖, 马帼澳, 王孝强. SphK1/S1P/S1PR2信号通路促进肌生成:运动改善骨骼肌健康的新视角[J]. 中国组织工程研究, 2025, 29(6): 1265-1275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||