[1] 姜泉,王海隆,巩勋,等. 类风湿关节炎病证结合诊疗指南[J]. 中医杂志,2018,59(20):1794-1800.
[2] 中华中医药学会. 膝骨关节炎中西医结合诊疗指南(2023年版)[J]. 中医正骨,2023,35(6):1-10.
[3] 刘维. 痛风及高尿酸血症中西医结合诊疗指南[J]. 中医杂志,2023, 64(1):98-106.
[4] 付长龙,林艳铭,涂海水,等. 基于lncRNA MALAT1调控软骨细胞胆固醇代谢探讨透骨消痛胶囊延缓骨关节炎退变的机制研究[J]. 中国中药杂志,2024,49(7):1785-1792.
[5] 付长龙,梅阳阳,谢新宇,等. 从lncRNA NEAT1和IRE1α/XBP1信号通路探讨透骨消痛胶囊改善膝骨关节炎内质网应激研究[J]. 福建中医药,2023,54(6):37-39.
[6] 林木南,邵翔,许丽梅,等. 透骨消痛胶囊调节Ras-Raf-MEK1/2-ERK1/2信号通路抑制骨关节炎炎症反应的机制研究[J]. 康复学报, 2021,31(3):228-233.
[7] 黄云梅,冯芳芳,陈文列,等. 透骨消痛胶囊干预早期骨关节炎滑膜水肿模型大鼠的抗炎消肿作用[J]. 中国组织工程研究,2021, 25(17):2697-2702.
[8] 安子萌,付乾芳,薛雅若,等. 基于网络药理学、分子对接、分子动力学模拟探讨茸菖胶囊治疗小儿癫痫的靶点机制[J]. 天津中医药,2023,40(4):495-505.
[9] 陈琴,张志云,朱云婴,等. 基于网络药理学、分子对接及分子动力学模拟探讨黄连治疗溃疡性结肠炎的作用机制[J]. 现代药物与临床,2023,38(10):2444-2450.
[10] LI X, WEI S, NIU S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med. 2022; 144:105389.
[11] ZHAO L, ZHANG H, LI N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306.
[12] 刘俊鹏,谢兴文,黄委委,等. 网络药理学在中药治疗膝骨关节炎中的应用进展[J].临床医学研究与实践,2023,8(8):170-173.
[13] AMAN ZS, DEPHILLIPO NN, FAMILIARI F, et al. Acute Intervention With Selective Interleukin-1 Inhibitor Therapy May Reduce the Progression of Posttraumatic Osteoarthritis of the Knee: A Systematic Review of Current Evidence. Arthroscopy. 2022;38(8):2543-2556.
[14] XU W, ZHANG B, XI C, et al. Ferroptosis Plays a Role in Human Chondrocyte of Osteoarthritis Induced by IL-1beta In Vitro.Cartilage. 2023;14(4):455-466.
[15] LU J, MIAO Z, JIANG Y, et al. Chrysophanol prevents IL-1beta-Induced inflammation and ECM degradation in osteoarthritis via the Sirt6/NF-kappaB and Nrf2/NF-kappaB axis. Biochem Pharmacol. 2023;208:115402.
[16] NAKAYAMA Y, WATANABE R, YAMAMOTO W, et al. IL-6 inhibitors and JAK inhibitors as favourable treatment options for patients with anaemia and rheumatoid arthritis: ANSWER cohort study. Rheumatology (Oxford). 2024;63(2):349-357.
[17] LOPEZ J, AL-NAKKASH L, BRODERICK TL, et al. Genistein Suppresses IL-6 and MMP-13 to Attenuate Osteoarthritis in Obese Diabetic Mice. Metabolites. 2023;13(9):1014.
[18] 李芨慧,李玉宏,葛丽丽. 急性痛风性关节炎患者肌骨超声半定量评分与红细胞沉降率、白细胞介素-6水平及疾病活动度相关性分析[J]. 陕西医学杂志,2022,51(3):318-321.
[19] CORNELIS MC, BAE SC, KIM I, et al. CYP1A2 genotype and rheumatoid arthritis in Koreans. Rheumatol Int. 2010;30(10):1349-1354.
[20] TEKAYA R, ROUACHED L, BEN AH, et al. Variation of homocysteine levels in rheumatoid arthritis patients: relationship to inflammation, cardiovascular risk factors, and methotrexate. Z Rheumatol. 2023; 82(Suppl 1):38-43.
[21] MISHIMA S, KASHIWAKURA JI, TOYOSHIMA S, et al. Higher PGD(2) production by synovial mast cells from rheumatoid arthritis patients compared with osteoarthritis patients via miR-199a-3p/prostaglandin synthetase 2 axis. Sci Rep. 2021;11(1):5738.
[22] HOSOYA T, SHUKLA NM, FUJITA Y, et al. Identification of Compounds With Glucocorticoid Sparing Effects on Suppression of Chemokine and Cytokine Production by Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Front Pharmacol. 2020;11:607713.
[23] SHIN SH, JEONG J, KIM JH, et al. 1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol (PLAG) Mitigates Monosodium Urate (MSU)-Induced Acute Gouty Inflammation in BALB/c Mice. Front Immunol. 2020;11:710.
[24] GREMESE E, TOLUSSO B, BRUNO D, et al. The forgotten key players in rheumatoid arthritis: IL-8 and IL-17-Unmet needs and therapeutic perspectives. Front Med (Lausanne). 2023;10:956127.
[25] XIAO J, ZHANG P, CAI FL, et al. IL-17 in osteoarthritis: A narrative review.Open Life Sci. 2023;18(1):20220747.
[26] 吴广文,褚剑锋,许惠凤,等. 透骨消痛胶囊含药血清对退变关节软骨细胞表达TNF-α、IL-1β的影响[J]. 世界中西医结合杂志, 2012,7(4):295-298,310.
[27] 齐麒,欧梁,黄维琛,等. 基于TLR4/MyD88/NF-κB信号通路探讨通络蠲痹颗粒对骨关节炎炎症损伤和细胞凋亡的影响[J]. 中国实验方剂学杂志,2024,30(10):29-36.
[28] 刘毓,杨钊田,孙理军. 基于TLR4、NF-κB信号通路探讨当归拈痛汤治疗痛风性关节炎的作用机制[J]. 中南药学,2023,21(10):2606-2615.
[29] 许建,刘天泽,郑寿鹏,等. 骨碎补醇提物对骨关节炎大鼠滑膜组织中TLR4-NF-κB信号转导的影响[J]. 解剖科学进展,2023,29(4):419-422.
[30] YIN H, LIU N, SIGDEL KR, et al. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front Immunol. 2022;13:931690.
[31] 朴勇洙,齐明明,聂双莲,等. 基于BRD4/NF-κB/NLRP3通路介导的巨噬细胞焦亡探讨三石汤抑制痛风性关节炎的分子机制研究[J].海南医学院学报,2023,29(24):1863-1869.
[32] 谷慧敏,孟庆良,左瑞庭,等. β-谷甾醇对类风湿性关节炎滑膜成纤维细胞功能的影响及机制[J].中国药房,2023,34(15):1847-1852.
[33] PERIFERAKIS A, PERIFERAKIS AT, TROUMPATA L, et al. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci. 2023; 24(22):16299.
[34] 王飞,梅群超,冯晶,等. 山奈酚调控ROS/TXNIP通路对膝骨关节炎大鼠软骨细胞氧化及炎性损伤的改善作用[J].中国老年学杂志, 2024,44(1):229-233.
[35] LI N, CHEN S, DENG W, et al. Kaempferol Attenuates Gouty Arthritis by Regulating the Balance of Th17/Treg Cells and Secretion of IL-17. Inflammation. 2023;46(5):1901-1916.
[36] HU Y, GUI Z, ZHOU Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic Biol Med. 2019;145:146-160.
[37] LIU X, TAO T, YAO H, et al. Mechanism of action of quercetin in rheumatoid arthritis models: meta-analysis and systematic review of animal studies. Inflammopharmacology. 2023;31(4):1629-1645.
[38] FENG W, ZHONG X, ZHENG X, et al. Study on the effect and mechanism of quercetin in treating gout arthritis. Int Immunopharmacol. 2022; 111:109112.
|