[1] HARRINGTON JS, RYTER SW, PLATAKI M, et al. Mitochondria in health, disease, and aging. Physiol Rev. 2023;103(4):2349-2422.
[2] DING X, ZHANG Y, PAN PC, et al. Multiple mitochondria-targeted components screened from Sini decoction improved cardiac energetics and mitochondrial dysfunction to attenuate doxorubicin-induced cardiomyopathy. Theranostics. 2023;13(2):510-530.
[3] VELARDE F, EZQUERRA S, DELBRUYERE X, et al. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci. 2022;79(3):177.
[4] MALEKPOUR K, HAZRATI A, SOUDI S, et al. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Control Release. 2023;354:755-769.
[5] WEI B, JI ML, Lin YC, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther. 2023;14(1):104.
[6] ZHANG HY, YU XX, YE JF, et al. Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell. 2023;41(10):1788-1802.
[7] GOLIWAS KF, LIBRING S, BERESTESKY E, et al. Mitochondrial transfer from cancer-associated fibroblasts increases migration in aggressive breast cancer. J Cell Sci. 2023;136(14):jcs260419.
[8] SUBRAMANIAM MD, CHIRAYATH RB, IYER M, et al. Mesenchymal stem cells (MSCs) in Leber’s hereditary optic neuropathy (LHON): a potential therapeutic approach for future. Int Ophthalmol. 2022;42(9): 2949-2964.
[9] AHMAD T, MUKHERJEE S, PATTNAIK B, et al. Miro1 regulatesintercellular mitochondrial transport enhances mesenchymalstem cell rescue efficacy. EMBOJ. 2014;33(9):994-1010.
[10] ISLAM MN, DAS SR, EMIN MT, et al. Mitochondrial transfer from bone marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759-765.
[11] YANG YH, ZHANG Y, LI WJ, et al. Spectraplakin induces positive feedback between fusogens and the actin cytoskeleton to promote cell-cell fusion. Dev cell. 2017;41(1):107-120.
[12] WANG J, LI H, YAO Y, et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther. 2018;9(1):106.
[13] MELWANI PK, PANDEY BN. Tunneling nanotubes: The intercellular conduits contributing to cancer pathogenesis and its therapy. Biochim Biophys Acta Rev Cancer. 2023;1878(6):189028.
[14] ZHANG F, ZHENG XL, ZHAO FZ, et al. TFAM-Mediated mitochondrial transfer of MSCs improved the permeability barrier in sepsis-associated acute lung injury. Apoptosis. 2023;28(7-8):1048-1059.
[15] LIN RZ, IM GB, LUO AC, et al. Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature. 2024; 629(8012):660-668.
[16] JIANG D, CHEN FX, ZHOU H, et al. Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics. 2020;10(16): 7260-7272.
[17] SAGAR S, FAIZAN MI, CHAUDHARY N, et al. Obesity impairs cardiolipin- dependent mitophagy and therapeutic intercellular mitochondrial transfer ability of mesenchymal stem cells. Cell Death Dis. 2023;14(5):324.
[18] 杨焜,程意,郭雪君.隧道纳米管介导线粒体转移缓解氧化应激及其在慢性阻塞性肺疾病的研究进展[J].临床肺科杂志,2024, 29(1):65-68.
[19] AMIN R, RAINER S, IVANKA M, et al. Nanotubular highways for intercellular organelle transport.Science. 2004;303(5660):1007-1010.
[20] WANG X, GERDES H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181-1191.
[21] WANG JC, LIU X, QIU Y, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 2018;11(1):11.
[22] TISHCHENKO A, AZORIN DD, BRIME LV, et al. Cx43 and associated cell signaling pathways regulate tunneling nanotubes in breast cancer cells. Cancers (Basel). 2020;12(10):2798.
[23] KOYANAGI M, BRANDES RP, HAENDELER J, et al. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res. 2005;96(10): 1039-1041.
[24] SAITO K, ZHANG Q, YANG H, et al. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv. 2021;5(20):4233-4255.
[25] BURT R, DEY A, AREF S, et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood. 2019;134(17):1415-1429.
[26] BOISE LH, SHANMUGAM M. Stromal support of metabolic function through mitochondrial transfer in multiple myeloma. Cancer Res. 2019;79(9):2102-2103.
[27] NI XC, WANG HF, CAI YY, et al. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022;54:102363.
[28] LEIGHTON SE, WONG RS, LUCACIU SA, et al. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci. 2024;137(7):jcs261631.
[29] ZAMPIERI LX, ALMEIDA CS, RONDEAU JD, et al. Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci. 2021;22(6):3245.
[30] SINGH AK, CANCELAS JA. Gap junctions in the bone marrow lympho-hematopoietic stem cell niche, leukemia progression, and chemoresistance. Int J Mol Sci. 2020;21(3):796.
[31] LI HYZ, WANG C, HE T, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics. 2019;9(7):2017-2035.
[32] ANDREW SK, TERASE YS, ANTHONY HPM, et al. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung.Stem Cell Res Ther.2016;7(1):91.
[33] 诸葛晓萱,李策,包广洁,等.缝隙连接蛋白43经典与非经典作用在疾病治疗中的潜在价值[J].中国组织工程研究,2024,27(7): 1130-1136.
[34] LIU ZH, SUN Y, QI ZT, et al. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022;12(1):66.
[35] NORRIS RP. Transfer of mitochondria and endosomes between cells by gap junction internalization. Traffic. 2021;22(6):174-179.
[36] IOSILEVSKII Y, PODBILEWICZ B. Programmed cell fusion in development and homeostasis. Curr Top Dev Biol. 2021;144:215-244.
[37] WHITLOCK JM, CHERNOMORDIK LV. Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem. 2021; 296:100411.
[38] SMUROVA K, PODBILEWICZ B. RAB-5- and DYNAMIN-1-mediated endocytosis of EFF-1 fusogen controls cell-cell fusion. Cell Rep. 2016; 14(6):1517-1527.
[39] MERLINI L, KHALILI B, DUDIN O, et al. Inhibition of Ras activity coordinates cell fusion with cell-cell contact during yeast mating. J Cell Biol. 2018;217(4):1467-1483.
[40] DUDIN O, MERLINI L, MARTIN SG. Spatial focalization of pheromone/MAPK signaling triggers commitment to cell–cell fusion. Gene Dev. 2016;30(19):2226-2239.
[41] WEICHERT M, LICHIUS A, PRIEGNITZ BE, et al. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion. PNAS. 2016;113(42): 11877-11882.
[42] ACQUISTAPACE A, BRU T, LESAULT PF, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29(5):812-824.
[43] WADA KI, HOSOKAWA K, ITO Y, et al. Quantitatively controlled intercellular mitochondrial transfer by cell fusion-based method using a microfluidic device. Methods Mol Biol. 2021;2277:39-47.
[44] 肖雨倩,白艳杰,王岩,等.线粒体转移在脑卒中后认知障碍中的研究进展[J].中国全科医学,2023,26(30):3833-3840.
[45] BOUDREAU LH, DUCHEZ AC, CLOUTIER N, et al. Platelets release mitochondria serving as substrate for bactericidalgroup IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14): 2173-2183.
[46] SOUZA AD, BURCH A, DAVE KM, et al. Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. J Control Release. 2021;338:505-526.
[47] GEORGATZAKOU HT, FORTIS SP, PAPAGEORGIOU EG, et al. Blood cell-derived microvesicles in hematological diseases and beyond. Biomolecules. 2022;12(6):803.
[48] MAACHA S, BHAT AA, JIMENEZ L, et al. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer. 2019;18(1):1-16.
[49] VIJAYAN V, YAN H, LOHMEYER JK, et al. Extracellular release of mitochondria induced by pre-hematopoietic stem cell transplant conditioning exacerbates GVHD. Blood Adv. 2024;3:2023012328.
[50] ZOROVA LD, KOVALCHUK SI, POPKOV VA, et al. Do extracellular vesicles derived from mesenchymal stem cells contain functional mitochondria? Int J Mol Sci. 2022;23(13):7408.
[51] SCANDELLA V, PETRELLI F, MOORE DL, et al. Neural stem cell metabolism revisited: a critical role for mitochondria. Trends Endocrinol Metab. 2023;34(8):446-461.
[52] MALEKPOUR K, HAZRATI A, SOUDI S, et al. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J Control Release. 2023;354:755-769.
[53] BOUDREAU LH, DUCHEZ AC, CLOUTIER N, et al. Platelets release mitochondria serving as substrate for bactericidalgroup IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14): 2173-2183.
[54] WANG L, WU Q, FAN ZJ, et al. Platelet mitochondrial dysfunction and the correlation with humandiseases. Biochem Soc T. 2017;45(6): 1213-1223.
[55] MCCARREL TM. Equine platelet-rich plasma. Vet Clin North Am Equine Pract. 2023;39(3):429-442.
[56] GAO YH, MI NN, WU WX, et al. Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. J Extracell Vesicles. 2024;13(2):e12410.
[57] PUHM F, AFONYUSHKIN T, RESCH U, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res. 2019;125(1): 43-52.
[58] IKEDA G, SANTOSO MR, TADA Y, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77(8): 1073-1088.
[59] HOUGH KP, TREVOR JL, STRENKOWSKI JG, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Bio. 2018;18:54-64.
[60] DOULAMIS IP, GUARIENTO A, DUIGNAN T, et al. Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol. 2020;319(3):F403-F413.
[61] 周健,高俊杰,张长青.线粒体转移与骨和软骨[J].国际骨科学杂志,2024,45(2):53-56.
[62] ZHAO ZL, ZHOU Y, HILTON T, et al. Extracellular mitochondria released from traumatized brains induced platelet procoagulant activity. Haematologica. 2020;105(1):209-217.
[63] CHOU SHY, LAN J, ELGA E, et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke. 2017;48(8):2231-2237.
[64] GRIGORIEV I, SPLINTER D, KEIJZER N, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007;13(2):305-314.
[65] CHOI SY, HUANG P, JENKINS GM, et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol. 2006;8(11):1255-1262.
[66] PHINNEY DG, DI GM, NJAH J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6(1):8472.
[67] HAYAKAWA K, ESPOSITO E, WANG X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613): 551-555.
[68] JIAO HF, JIANG D, HU XY, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 2021;184(11): 2896-2910.
[69] CHEN J, FU CY, SHEN GR, et al. Macrophages induce cardiomyocyte ferroptosis via mitochondrial transfer. Free Radic Biol Med. 2022;190: 1-14.
[70] RENNICK JJ, JOHNSTON APR, PARTON RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16(3):266-276.
[71] KITANI T, KAMI D, MATOBA S, et al. Internalization of isolated functional mitochondria: involvement of macropinocytosis. J Cell Mol Med. 2014;18(8):1694-1703.
[72] KESNER EE, SAADA RA, LORBERBOUM GH. Characteristics of mitochondrial transformation into human cells. Sci Rep. 2016;6(1): 26057.
[73] PACAK CA, PREBLE JM, KONDO H, et al. Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol Open. 2015;4(5):622-626.
[74] SUN C, LIU XX, WANG B, et al. Endocytosis-mediated mitochondrial transplantation: transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 2019;9(12):3595-3607. |