[1] WANG QQ, ZHOU R, SUN JZ, et al. Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures. ACS Nano. 2022; 16(9):13468-13491. 
[2]	ZHANG X, FU Q, DUAN H, et al. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano. 2021;15(4):6147-6191. 
[3]	DUAN YP, ZHAO X, SUN MM, et al. Research Advances in The Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res. 2021;60(3):1071-1095. 
[4]	LIANG W, LE Z, DONG P, et al. Janus Bimetallic Materials as Efficient Electrocatalysts for Hydrogen Oxidation and Evolution Reactions. J Colloid Interface Sci. 2022;625:128-135. 
[5]	LI S, QIU F, XIA Y, et al. Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation. ACS Appl Mater Interfaces. 2022; 14(17):19409-19418. 
[6]	ZHOU D, TANG X, GUO X, et al. Polyolefin-Based Janus Separator for Rechargeable Sodium Batteries. Angew Chem Int Ed Engl. 2020; 59(38):16725-16734. 
[7]	AGABA A, MARRIAM I, TEBYETEKERWA M, et al. Janus Hybrid Sustainable All-cellulose Nanofiber Sponge for Oil-Water Separation. Int J Biol Macromol. 2021;185:997-1004. 
[8]	ZHANG JJ, WANG CC, XING HW, et al. Advances in Asymmetric Wettable Janus Materials for Oil-Water Separation. Molecules. 2022;27(21):7470. 
[9]	CHEN HB, YAN J, HU SY, et al. Janus Fibre/Sponge Composite Combined with IOPNs Promotes Haemostasis and Efficient Reconstruction in Oral Guided Bone Regeneration. Mater Des. 2022;222:111083. 
[10]	JIANG YX, ZHU CH, MA XX, et al. Janus Hydrogels: Merging Boundaries in Tissue Engineering for Enhanced Biomaterials and Regenerative Therapies. Biomater Sci. 2024;12(10):2504-2520. 
[11]	KIERULF A, ENAYATI M, YAGHOOBI M, et al. Starch Janus Particles: Bulk Synthesis, Self-Assembly, Rheology, and Potential Food Applications. ACS Appl Mater Interfaces. 2022;14(51):57371-57386. 
[12]	LIN J, HE Y, HE Y, et al. Janus Functional Electrospun Polyurethane Fibrous Membranes for Periodontal Tissue Regeneration. J Mater  Chem B. 2023;11(38):9223-9236. 
[13]	LV S, YUAN X, XIAO J, et al. Hemostasis-Osteogenesis Ntegrated Janus Carboxymethyl chitin/Hydroxyapatite Porous Membrane for Bone Defect Repair. Carbohydr Polym. 2023;313:120888. 
[14]	ZHANG Q, ZHU J, FEI X, et al. A Janus Nanofibrous Scaffold Integrated with Exercise-driven Electrical Stimulation and Nanotopological Effect Enabling the Promotion of Tendon-to-Bone Healing. Nano Today. 2024;55. doi:10.1016/j.nantod.2024.102208 
[15]	ROCA AG, LOPEZ-BARBERA JF, LAFUENTE A, et al. Iron Oxide Nanoparticles (Fe3O4, γ-Fe2O3 and FeO) as Photothermal Heat Mediators in The First, Second and Third Biological Windows. Phys Rep. 2023;1043:1-35. 
[16]	SHAO D, LI J, ZHENG X, et al. Janus “Nano-Bullets” for Magnetic Targeting Liver Cancer Chemotherapy. Biomaterials. 2016;100:118-133. 
[17]	MADADI M, KHOEE S. Magnetite-Based Janus Nanoparticles, Their Synthesis and Biomedical Applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(6):e1908. 
[18]	LI Z, GAO Z, WANG C, et al. Recent Progress on Bioimaging Strategies Based on Janus Nanoparticles. Nanoscale. 2022;14(35):12560-12568. 
[19]	HUANG YJ, LIU D, GUO RR, et al. Intelligent Jellyfish-Type Janus Nanoreactor Targeting Synergistic Treatment of Bacterial Infections. ACS Appl Bio Materi. 2023;6(6):2384-2393. 
[20]	LIU C, HUANG J, XU T, et al. Powering Bioanalytical Applications in Biomedicine with Light-Responsive Janus Micro-/Nanomotors. Microchimica Acta. 2022;189(3):116. 
[21]	YANG Z, WANG L, GAO Z, et al. Ultrasmall Enzyme-Powered Janus Nanomotor Working in Blood Circulation System. ACS Nano. 2023; 17(6):6023-6035. 
[22]	MONTASERI H, ABRAHAMSE H. Targeted Photodynamic Therapy Technique of Janus Nanoparticles on Breast Cancer. Artif Cells Nanomed Biotechnol. 2024;52(1):270-277. 
[23]	KARADKAR S, TIWARI A, CHASKAR AC. Recent Advancements in Janus Nanoparticle-Based Biosensing Platforms. Int Nano Lett. 2023;13(2): 93-115. 
[24]	ALBERT SK, LEE S, DURAI P, et al. Janus Nanosheets with Face-Selective Molecular Recognition Properties from DNA-Peptide Conjugates. Small. 2021;17(12):e2006110. 
[25]	LE TC, ZHAI J, CHIU WH, et al. Janus Particles: Recent Advances in The Biomedical Applications. Int J Nanomedicine. 2019;14:6749-6777. 
[26]	AZHDARI S, POST Y, TRÖEMER M, et al. Janus Nanoplates, -Bowls, and -Cups: Controlling Size and Curvature via Terpolymer/Homopolymer Blending in 3D Confinement. Nanoscale. 2023;15(36):14896-14905. 
[27]	GEORGITSOPOULOU S, ANGELOPOULOU A, PAPAIOANNOU L, et al. Self-Assembled Janus Graphene Nanostructures with High Camptothecin Loading for Increased Cytotoxicity to Cancer Cells. J Drug Deliv Sci Technol. 2022;67:102971. 
[28]	DE LEON A, RODIER BJ, LUO QM, et al. Distinct Chemical and Physical Properties of Janus Nanosheets. Acs Nano. 2017;11(7):7485-7493. 
[29]	YANG S, GUO F, KIRALY B, et al. Microfluidic Synthesis of Multifunctional Janus Particles for Biomedical Applications. Lab Chip. 2012;12(12): 2097-2102. 
[30]	KAEWSANEHA C, TANGBORIBOONRAT P, POLPANICH D, et al. Janus Colloidal Particles: Preparation, Properties, and Biomedical Applications. ACS Appl Mater Interfaces. 2013;5(6):1857-1869. 
[31]	CHENG Q, CHEN J, WAN C, et al. Preparation of Janus Droplets and Hydrogels with Controllable Morphologies by An Aqueous Two-Phase System on The Superamphiphobic Surface. ACS Appl Mater Interfaces. 2022;14(44):50434-50443. 
[32]	YANG L, YANG W, XU W, et al. Bio-Inspired Janus Microcarriers with Sequential Actives Release for Bone Regeneration. Chem Eng J. 2023; 476:146797. 
[33]	鲍艳,项茹.功能性Janus纳米颗粒的研究进展[J].精细化工, 2024,41(4):697-706,39. 
[34]	GUO J, LI Y, WANG B, et al. Self-Propelled Janus Nanomotor as Active Probe for Detection of Pepsinogen by Lateral Flow Immunoassay. Mikrochim Acta. 2022;189(12):468. 
[35]	MILIAN YE, CLAROS M, USHAK S, et al. Silica Based Janus Nanoparticles: Synthesis Methods, Characterization, and Applications. Appl Mater Today. 2023;34:101901. 
[36]	WANG J, WANG Z, LI L, et al. Ultra-Small Janus Nanoparticle-Induced Activation of Ferroptosis for Synergistic Tumor Immunotherapy. Acta Biomater. 2024;181:362-374. 
[37]	WAN W, REN XL, TAN JR, et al. Preparation of Janus Fluorescent Probe Based on An Asymmetrical Silica and Its Application in Glucose and Alpha-fetoprotein Detection. J Mater Chem B. 2023;11(28):6664-6670. 
[38]	WANG Z, ZHANG F, SHAO D, et al. Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. Adv Sci (Weinh). 2019; 6(22):1901690. 
[39]	ZUO S, WANG J, AN X, et al. Janus Magnetic Nanoplatform for Magnetically Targeted and Protein/Hyperthermia Combination Therapies of Breast Cance. Front Bioeng Biotechnol. 2021;9:763486. 
[40]	ZHU X, LI K, LI J, et al. Physicochemical Properties and Antibacterial Property of Pickering Emulsion Stabilized by Smart Janus Nanospheres. Food Chem. 2024;451:139413. 
[41]	KHOEE S, BAKVAND PM. Synthesis of Dual-Responsive Janus Nanovehicle via PNIPAm Modified SPIONs Deposition on Crosslinked Chitosan Microparticles and Decrosslinking Process in The Core. Eur Polym J. 2019;114: 411-425. 
[42]	URBAN M, FREISINGER B, GHAZY O, et al. Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules. 2014;47(20):7194-7199. 
[43]	王端达,沈欣怡,宋永杨,等.新兴Janus颗粒在油水分离中的应用进展[J].化学学报,2023,81(9):1187-1195. 
[44]	SONG Q, CHAO Y, ZHANG Y, et al. Controlled Formation of All-Aqueous Janus Droplets by Liquid-Liquid Phase Separation of an Aqueous Three-Phase System. J Phys Chem B. 2021;125(2):562-570. 
[45]	SAQIB M, TRAN PA, ERCAN B, et al. Microfluidic Methods in Janus Particle Synthesis. Int J Nanomedicine. 2022;17:4355-4366. 
[46]	SAQIB M, ERCAN B, ERDEM EY. Synthesis of Anisotropic Magnetic Polymeric Janus Particles by In Situ Separation of Magnetic Nanoparticles in A Microfluidic Device. Langmuir. 2023;39(48):17080-17087. 
[47]	FENG ZY, LIU TT, SANG ZT, et al. Microfluidic Preparation of Janus Microparticles with Temperature and pH Triggered Degradation Properties. Front Bioeng Biotechnol. 2021;9:756758. 
[48]	CHEN K, PENG X, DANG M, et al. General Thermodynamic-Controlled Coating Method to Prepare Janus Mesoporous Nanomotors for Improving Tumor Penetration. ACS Appl Mater Interfaces. 2021;13(43): 51297-51311. 
[49]	TAMAROV K, SVIRIDOV A, XU W, et al. Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS Appl Mater Interfaces. 2017;9(40):35234-35243. 
[50]	ZHANG X, WANG W, SU L, et al. Plasmonic-Fluorescent Janus Ag/Ag2S Nanoparticles for In Situ H2O2-Activated NIR-II Fluorescence Imaging. Nano Lett. 2021;21(6):2625-2633. 
[51]	MORIS H, GHAEE A, KARIMI M, et al. Preparation and Characterization of Pullulan-Based Nanocomposite Scaffold Incorporating Ag-Silica Janus Particles for Bone Tissue Engineering. Biomater Adv. 2022;135:212733. 
[52]	WANG J, LUO D, CAI Y, et al. A Plasmonic Au-Ag Janus Nanoprobe for Monitoring Endogenous Hydrogen Sulfide Generation in Living Cells. Biosens Bioelectron. 2022;213:114422. 
[53]	WEI R, FU G, LI Z, et al. Au-Fe3O4 Janus Nanoparticles for Imaging-Guided Near Infrared-Enhanced Ferroptosis Therapy in Triple Negative Breast Cancer. J Colloid Interface Sci. 2024;663:644-655. 
[54]	XING Y, ZHOU Y, ZHANG Y, et al. Facile Fabrication Route of Janus Gold-Mesoporous Silica Nanocarriers with Dual-Drug Delivery for Tumor Therapy. ACS Biomater Sci Eng. 2020;6(3):1573-1581. 
[55]	LI X, LI Y, YU C, et al. ROS-Responsive Janus Au/Mesoporous Silica Core/Shell Nanoparticles for Drug Delivery and Long-Term CT Imaging Tracking of MSCs in Pulmonary Fibrosis Treatment. ACS Nano. 2023; 17(7):6387-6399. 
[56]	DÍEZ P, LUCENA-SÁNCHEZ E, ESCUDERO A, et al. Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano. 2021;15(3):4467-4480. 
[57]	YU S, WANG Y, HE P, et al. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol. 2022;12:809304. 
[58]	NOSRATI H, GHAFFARLOU M, SALEHIABAR M, et al. Magnetite and Bismuth Sulfide Janus Heterostructures as Radiosensitizers for in Vivo Enhanced Radiotherapy in Breast Cancer. Biomater Adv. 2022;140: 213090. 
[59]	ZHANG XY, GE HY, MA YL, et al. Engineered Anti-Cancer Nanomedicine for Synergistic Ferroptosis-Immunotherapy. Chem Eng J. 2023;455: 140688. 
[60]	WANG WJ, MA EH, TAO PY, et al. Chemical-NIR Dual-Powered CuS/Pt Nanomotors for Tumor Hypoxia Modulation, Deep Tumor Penetration and Augmented Synergistic Phototherapy. J Mater Sci Technol. 2023; 148:171-185. 
[61]	CHEN T, YANG J, ZHAO H, et al. Ultrasound-Propelled Nanomotors for Efficient Cancer Cell Ferroptosis. J Mater Chem B. 2024;12(3):667-677. 
[62]	DING X, WANG T, BAI S, et al. Multifunction in One Nanoparticle for Anticancer Therapy: Bowl-Shaped Au@PDA Yolk-Shell NPs. ACS Appl Mater Interfaces. 2022;14(24):27733-27742. 
[63]	CHEN X, HOU M, ZHANG X, et al. Active Targeted Janus Theranostic Nanoplatforms Enable Chemo-Photothermal Therapy to Inhibit The Growth of Breast Cancer. Mol Pharm. 2023;20(11):5800-5810. 
[64]	WANG ZF, WANG M, QIAN YR, et al. Dual-Targeted Nanoformulation with Janus Structure for Synergistic Enhancement of Sonodynamic Therapy and Chemotherapy. Chin Chem Lett. 2023;34(7):107853. 
[65]	LIU L, LI S, YANG K, et al. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. Nano Lett. 2023;23(9):3929-3938. 
[66]	GUI H, YANG T, LI LL, et al. Temperature-Sensitive Anti-Inflammatory Organohydrogels Containing Janus Particle Stabilized Phase-Change Microinclusions. ACS Nano. 2022;16(6):9859-9870. 
[67]	PANIAGUA G, VILLALONGA A, EGUíLAZ M, et al. Amperometric Aptasensor for Carcinoembryonic Antigen Based on The Use of Bifunctionalized Janus Nanoparticles as Biorecognition-Signaling Element. Anal Chim Acta. 2019;1061:84-91. 
[68]	RUSSELL SM, ALBA-PATIÑO A, BORGES M, et al. Multifunctional Motion-to-Tolor Janus Transducers for The Rapid Detection of Sepsis Biomarkers in Whole Blood. Biosens Bioelectron. 2019;140:154-160. 
[69]	DUAN W, QIU Z, CAO S, et al. Pd-Fe3O4 Janus Nanozyme with Rational Design for Ultrasensitive Colorimetric Detection of Biothiols. Biosens Bioelectron. 2022;196:113724. |