[1] WANG QQ, ZHOU R, SUN JZ, et al. Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures. ACS Nano. 2022; 16(9):13468-13491.
[2] ZHANG X, FU Q, DUAN H, et al. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano. 2021;15(4):6147-6191.
[3] DUAN YP, ZHAO X, SUN MM, et al. Research Advances in The Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res. 2021;60(3):1071-1095.
[4] LIANG W, LE Z, DONG P, et al. Janus Bimetallic Materials as Efficient Electrocatalysts for Hydrogen Oxidation and Evolution Reactions. J Colloid Interface Sci. 2022;625:128-135.
[5] LI S, QIU F, XIA Y, et al. Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation. ACS Appl Mater Interfaces. 2022; 14(17):19409-19418.
[6] ZHOU D, TANG X, GUO X, et al. Polyolefin-Based Janus Separator for Rechargeable Sodium Batteries. Angew Chem Int Ed Engl. 2020; 59(38):16725-16734.
[7] AGABA A, MARRIAM I, TEBYETEKERWA M, et al. Janus Hybrid Sustainable All-cellulose Nanofiber Sponge for Oil-Water Separation. Int J Biol Macromol. 2021;185:997-1004.
[8] ZHANG JJ, WANG CC, XING HW, et al. Advances in Asymmetric Wettable Janus Materials for Oil-Water Separation. Molecules. 2022;27(21):7470.
[9] CHEN HB, YAN J, HU SY, et al. Janus Fibre/Sponge Composite Combined with IOPNs Promotes Haemostasis and Efficient Reconstruction in Oral Guided Bone Regeneration. Mater Des. 2022;222:111083.
[10] JIANG YX, ZHU CH, MA XX, et al. Janus Hydrogels: Merging Boundaries in Tissue Engineering for Enhanced Biomaterials and Regenerative Therapies. Biomater Sci. 2024;12(10):2504-2520.
[11] KIERULF A, ENAYATI M, YAGHOOBI M, et al. Starch Janus Particles: Bulk Synthesis, Self-Assembly, Rheology, and Potential Food Applications. ACS Appl Mater Interfaces. 2022;14(51):57371-57386.
[12] LIN J, HE Y, HE Y, et al. Janus Functional Electrospun Polyurethane Fibrous Membranes for Periodontal Tissue Regeneration. J Mater Chem B. 2023;11(38):9223-9236.
[13] LV S, YUAN X, XIAO J, et al. Hemostasis-Osteogenesis Ntegrated Janus Carboxymethyl chitin/Hydroxyapatite Porous Membrane for Bone Defect Repair. Carbohydr Polym. 2023;313:120888.
[14] ZHANG Q, ZHU J, FEI X, et al. A Janus Nanofibrous Scaffold Integrated with Exercise-driven Electrical Stimulation and Nanotopological Effect Enabling the Promotion of Tendon-to-Bone Healing. Nano Today. 2024;55. doi:10.1016/j.nantod.2024.102208
[15] ROCA AG, LOPEZ-BARBERA JF, LAFUENTE A, et al. Iron Oxide Nanoparticles (Fe3O4, γ-Fe2O3 and FeO) as Photothermal Heat Mediators in The First, Second and Third Biological Windows. Phys Rep. 2023;1043:1-35.
[16] SHAO D, LI J, ZHENG X, et al. Janus “Nano-Bullets” for Magnetic Targeting Liver Cancer Chemotherapy. Biomaterials. 2016;100:118-133.
[17] MADADI M, KHOEE S. Magnetite-Based Janus Nanoparticles, Their Synthesis and Biomedical Applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(6):e1908.
[18] LI Z, GAO Z, WANG C, et al. Recent Progress on Bioimaging Strategies Based on Janus Nanoparticles. Nanoscale. 2022;14(35):12560-12568.
[19] HUANG YJ, LIU D, GUO RR, et al. Intelligent Jellyfish-Type Janus Nanoreactor Targeting Synergistic Treatment of Bacterial Infections. ACS Appl Bio Materi. 2023;6(6):2384-2393.
[20] LIU C, HUANG J, XU T, et al. Powering Bioanalytical Applications in Biomedicine with Light-Responsive Janus Micro-/Nanomotors. Microchimica Acta. 2022;189(3):116.
[21] YANG Z, WANG L, GAO Z, et al. Ultrasmall Enzyme-Powered Janus Nanomotor Working in Blood Circulation System. ACS Nano. 2023; 17(6):6023-6035.
[22] MONTASERI H, ABRAHAMSE H. Targeted Photodynamic Therapy Technique of Janus Nanoparticles on Breast Cancer. Artif Cells Nanomed Biotechnol. 2024;52(1):270-277.
[23] KARADKAR S, TIWARI A, CHASKAR AC. Recent Advancements in Janus Nanoparticle-Based Biosensing Platforms. Int Nano Lett. 2023;13(2): 93-115.
[24] ALBERT SK, LEE S, DURAI P, et al. Janus Nanosheets with Face-Selective Molecular Recognition Properties from DNA-Peptide Conjugates. Small. 2021;17(12):e2006110.
[25] LE TC, ZHAI J, CHIU WH, et al. Janus Particles: Recent Advances in The Biomedical Applications. Int J Nanomedicine. 2019;14:6749-6777.
[26] AZHDARI S, POST Y, TRÖEMER M, et al. Janus Nanoplates, -Bowls, and -Cups: Controlling Size and Curvature via Terpolymer/Homopolymer Blending in 3D Confinement. Nanoscale. 2023;15(36):14896-14905.
[27] GEORGITSOPOULOU S, ANGELOPOULOU A, PAPAIOANNOU L, et al. Self-Assembled Janus Graphene Nanostructures with High Camptothecin Loading for Increased Cytotoxicity to Cancer Cells. J Drug Deliv Sci Technol. 2022;67:102971.
[28] DE LEON A, RODIER BJ, LUO QM, et al. Distinct Chemical and Physical Properties of Janus Nanosheets. Acs Nano. 2017;11(7):7485-7493.
[29] YANG S, GUO F, KIRALY B, et al. Microfluidic Synthesis of Multifunctional Janus Particles for Biomedical Applications. Lab Chip. 2012;12(12): 2097-2102.
[30] KAEWSANEHA C, TANGBORIBOONRAT P, POLPANICH D, et al. Janus Colloidal Particles: Preparation, Properties, and Biomedical Applications. ACS Appl Mater Interfaces. 2013;5(6):1857-1869.
[31] CHENG Q, CHEN J, WAN C, et al. Preparation of Janus Droplets and Hydrogels with Controllable Morphologies by An Aqueous Two-Phase System on The Superamphiphobic Surface. ACS Appl Mater Interfaces. 2022;14(44):50434-50443.
[32] YANG L, YANG W, XU W, et al. Bio-Inspired Janus Microcarriers with Sequential Actives Release for Bone Regeneration. Chem Eng J. 2023; 476:146797.
[33] 鲍艳,项茹.功能性Janus纳米颗粒的研究进展[J].精细化工, 2024,41(4):697-706,39.
[34] GUO J, LI Y, WANG B, et al. Self-Propelled Janus Nanomotor as Active Probe for Detection of Pepsinogen by Lateral Flow Immunoassay. Mikrochim Acta. 2022;189(12):468.
[35] MILIAN YE, CLAROS M, USHAK S, et al. Silica Based Janus Nanoparticles: Synthesis Methods, Characterization, and Applications. Appl Mater Today. 2023;34:101901.
[36] WANG J, WANG Z, LI L, et al. Ultra-Small Janus Nanoparticle-Induced Activation of Ferroptosis for Synergistic Tumor Immunotherapy. Acta Biomater. 2024;181:362-374.
[37] WAN W, REN XL, TAN JR, et al. Preparation of Janus Fluorescent Probe Based on An Asymmetrical Silica and Its Application in Glucose and Alpha-fetoprotein Detection. J Mater Chem B. 2023;11(28):6664-6670.
[38] WANG Z, ZHANG F, SHAO D, et al. Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. Adv Sci (Weinh). 2019; 6(22):1901690.
[39] ZUO S, WANG J, AN X, et al. Janus Magnetic Nanoplatform for Magnetically Targeted and Protein/Hyperthermia Combination Therapies of Breast Cance. Front Bioeng Biotechnol. 2021;9:763486.
[40] ZHU X, LI K, LI J, et al. Physicochemical Properties and Antibacterial Property of Pickering Emulsion Stabilized by Smart Janus Nanospheres. Food Chem. 2024;451:139413.
[41] KHOEE S, BAKVAND PM. Synthesis of Dual-Responsive Janus Nanovehicle via PNIPAm Modified SPIONs Deposition on Crosslinked Chitosan Microparticles and Decrosslinking Process in The Core. Eur Polym J. 2019;114: 411-425.
[42] URBAN M, FREISINGER B, GHAZY O, et al. Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules. 2014;47(20):7194-7199.
[43] 王端达,沈欣怡,宋永杨,等.新兴Janus颗粒在油水分离中的应用进展[J].化学学报,2023,81(9):1187-1195.
[44] SONG Q, CHAO Y, ZHANG Y, et al. Controlled Formation of All-Aqueous Janus Droplets by Liquid-Liquid Phase Separation of an Aqueous Three-Phase System. J Phys Chem B. 2021;125(2):562-570.
[45] SAQIB M, TRAN PA, ERCAN B, et al. Microfluidic Methods in Janus Particle Synthesis. Int J Nanomedicine. 2022;17:4355-4366.
[46] SAQIB M, ERCAN B, ERDEM EY. Synthesis of Anisotropic Magnetic Polymeric Janus Particles by In Situ Separation of Magnetic Nanoparticles in A Microfluidic Device. Langmuir. 2023;39(48):17080-17087.
[47] FENG ZY, LIU TT, SANG ZT, et al. Microfluidic Preparation of Janus Microparticles with Temperature and pH Triggered Degradation Properties. Front Bioeng Biotechnol. 2021;9:756758.
[48] CHEN K, PENG X, DANG M, et al. General Thermodynamic-Controlled Coating Method to Prepare Janus Mesoporous Nanomotors for Improving Tumor Penetration. ACS Appl Mater Interfaces. 2021;13(43): 51297-51311.
[49] TAMAROV K, SVIRIDOV A, XU W, et al. Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS Appl Mater Interfaces. 2017;9(40):35234-35243.
[50] ZHANG X, WANG W, SU L, et al. Plasmonic-Fluorescent Janus Ag/Ag2S Nanoparticles for In Situ H2O2-Activated NIR-II Fluorescence Imaging. Nano Lett. 2021;21(6):2625-2633.
[51] MORIS H, GHAEE A, KARIMI M, et al. Preparation and Characterization of Pullulan-Based Nanocomposite Scaffold Incorporating Ag-Silica Janus Particles for Bone Tissue Engineering. Biomater Adv. 2022;135:212733.
[52] WANG J, LUO D, CAI Y, et al. A Plasmonic Au-Ag Janus Nanoprobe for Monitoring Endogenous Hydrogen Sulfide Generation in Living Cells. Biosens Bioelectron. 2022;213:114422.
[53] WEI R, FU G, LI Z, et al. Au-Fe3O4 Janus Nanoparticles for Imaging-Guided Near Infrared-Enhanced Ferroptosis Therapy in Triple Negative Breast Cancer. J Colloid Interface Sci. 2024;663:644-655.
[54] XING Y, ZHOU Y, ZHANG Y, et al. Facile Fabrication Route of Janus Gold-Mesoporous Silica Nanocarriers with Dual-Drug Delivery for Tumor Therapy. ACS Biomater Sci Eng. 2020;6(3):1573-1581.
[55] LI X, LI Y, YU C, et al. ROS-Responsive Janus Au/Mesoporous Silica Core/Shell Nanoparticles for Drug Delivery and Long-Term CT Imaging Tracking of MSCs in Pulmonary Fibrosis Treatment. ACS Nano. 2023; 17(7):6387-6399.
[56] DÍEZ P, LUCENA-SÁNCHEZ E, ESCUDERO A, et al. Ultrafast Directional Janus Pt-Mesoporous Silica Nanomotors for Smart Drug Delivery. ACS Nano. 2021;15(3):4467-4480.
[57] YU S, WANG Y, HE P, et al. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol. 2022;12:809304.
[58] NOSRATI H, GHAFFARLOU M, SALEHIABAR M, et al. Magnetite and Bismuth Sulfide Janus Heterostructures as Radiosensitizers for in Vivo Enhanced Radiotherapy in Breast Cancer. Biomater Adv. 2022;140: 213090.
[59] ZHANG XY, GE HY, MA YL, et al. Engineered Anti-Cancer Nanomedicine for Synergistic Ferroptosis-Immunotherapy. Chem Eng J. 2023;455: 140688.
[60] WANG WJ, MA EH, TAO PY, et al. Chemical-NIR Dual-Powered CuS/Pt Nanomotors for Tumor Hypoxia Modulation, Deep Tumor Penetration and Augmented Synergistic Phototherapy. J Mater Sci Technol. 2023; 148:171-185.
[61] CHEN T, YANG J, ZHAO H, et al. Ultrasound-Propelled Nanomotors for Efficient Cancer Cell Ferroptosis. J Mater Chem B. 2024;12(3):667-677.
[62] DING X, WANG T, BAI S, et al. Multifunction in One Nanoparticle for Anticancer Therapy: Bowl-Shaped Au@PDA Yolk-Shell NPs. ACS Appl Mater Interfaces. 2022;14(24):27733-27742.
[63] CHEN X, HOU M, ZHANG X, et al. Active Targeted Janus Theranostic Nanoplatforms Enable Chemo-Photothermal Therapy to Inhibit The Growth of Breast Cancer. Mol Pharm. 2023;20(11):5800-5810.
[64] WANG ZF, WANG M, QIAN YR, et al. Dual-Targeted Nanoformulation with Janus Structure for Synergistic Enhancement of Sonodynamic Therapy and Chemotherapy. Chin Chem Lett. 2023;34(7):107853.
[65] LIU L, LI S, YANG K, et al. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. Nano Lett. 2023;23(9):3929-3938.
[66] GUI H, YANG T, LI LL, et al. Temperature-Sensitive Anti-Inflammatory Organohydrogels Containing Janus Particle Stabilized Phase-Change Microinclusions. ACS Nano. 2022;16(6):9859-9870.
[67] PANIAGUA G, VILLALONGA A, EGUíLAZ M, et al. Amperometric Aptasensor for Carcinoembryonic Antigen Based on The Use of Bifunctionalized Janus Nanoparticles as Biorecognition-Signaling Element. Anal Chim Acta. 2019;1061:84-91.
[68] RUSSELL SM, ALBA-PATIÑO A, BORGES M, et al. Multifunctional Motion-to-Tolor Janus Transducers for The Rapid Detection of Sepsis Biomarkers in Whole Blood. Biosens Bioelectron. 2019;140:154-160.
[69] DUAN W, QIU Z, CAO S, et al. Pd-Fe3O4 Janus Nanozyme with Rational Design for Ultrasensitive Colorimetric Detection of Biothiols. Biosens Bioelectron. 2022;196:113724. |