中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (17): 3537-3547.doi: 10.12307/2025.708
• 软骨组织构建 cartilage tissue construction • 上一篇 下一篇
余洋溢1,宋卓悦2,廉 强1,丁 康3,李广恒1
收稿日期:
2024-06-11
接受日期:
2024-09-19
出版日期:
2025-06-18
发布日期:
2024-10-30
通讯作者:
李广恒,博士,主任医师,深圳市肌肉骨骼组织重建与功能恢复重点实验室,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)骨科,成人关节重建与运动医学科,广东省深圳市 518020
作者简介:
余洋溢,男,1987年生,河南省人,汉族,2019年郑州大学毕业,博士,主治医师,主要从事骨软骨再生和生长板损伤修复研究。
并列第一作者:宋卓悦,郑州市骨科医院骨科,河南省郑州市 450000
基金资助:
Yu Yangyi1 , Song Zhuoyue2, Lian Qiang1, Ding Kang3, Li Guangheng1
Received:
2024-06-11
Accepted:
2024-09-19
Online:
2025-06-18
Published:
2024-10-30
Contact:
Li Guangheng, MD, Chief physician, Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
About author:
Yu Yangyi, Attending physician, Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Adult Joint Reconstruction and Sports Medicine, Department of Orthopedic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
Song Zhuoyue, Department of Orthopedics, Zhengzhou Orthopedics Hospital, Zhengzhou 450000, Henan Province, China
Yu Yangyi and Song Zhuoyue contributed equally to this work.
Supported by:
the National Natural Science Foundation of China (General Program), No. 81472136 (to LGH)
摘要:
文题释义:
腺相关病毒:一种小型、非致病性的单链DNA病毒,属于细小病毒科(Parvoviridae)。尽管腺相关病毒能够感染人类及其他灵长类动物,但它自身无法引起疾病,因此广泛用于基因治疗研究中
软骨再生:作为运动学最重要的一环,软骨起着支持关节、缓冲冲击以及减少骨之间摩擦的关键作用。但由于软骨是一个无血管组织,治疗软骨损伤一直是一个巨大的挑战。然而,随着科学技术的不断更新,软骨再生技术也在不断发展。
摘要
背景:近年来,腺相关病毒(Adeno-associated virus,AAV)基因治疗已被证明是治疗骨关节炎的可靠和安全的方法。然而,鉴于骨关节炎发病机制的复杂性,单一基因操作治疗骨关节炎可能不能产生令人满意的效果。先前的研究表明,核转录因子κB可以促进骨关节炎软骨细胞中的炎症通路,而骨形态发生蛋白4可以促进软骨再生。
目的:利用一种可以特异性靶向核转录因子κB的p65短发夹RNA(p65shRNA)与骨形态发生蛋白4一起治疗骨关节炎。
方法:制备包含AAV-p65-shRNA和AAV-骨形态发生蛋白4的病毒颗粒,通过转染AAV-p65-shRNA或AAV-骨形态发生蛋白4进入细胞,评估其抑制软骨细胞炎症和促进软骨形成的效果,并进行体内和体外实验。实验按干预方式分为5组:PBS组、骨关节炎组、AAV-骨形态发生蛋白4组、AAV-p65shRNA组、骨形态发生蛋白4-p65shRNA 1∶1组,然后分别于术后4,12,24周采集标本。采集关节组织后进行番红O和阿利新蓝染色。通过免疫荧光染色检测关节腔内注射病毒颗粒对软骨修复的影响。进一步研究两种转染病毒颗粒的最佳比例,以提高混合细胞在体内的软骨形成潜能。
结果与结论:AAV-p65shRNA和AAV-骨形态发生蛋白4联合应用对软骨再生和骨关节炎治疗有协同作用。以1∶1的比例转染
AAV-p65shRNA和AAV-骨形态发生蛋白4的混合细胞产生最多的细胞外基质合成(P < 0.05)。体内实验结果也显示两种病毒的组合对骨关节炎软骨的再生潜力是所有组中最高的(P < 0.05)。上述结果证实,当两种病毒的比例相同时,联合疗法的效果最佳。减少p65shRNA 或骨形态发生蛋白4 转染细胞会导致胶原蛋白Ⅱ合成减少。p65shRNA抑制炎症和骨形态发生蛋白4促进再生对治疗骨关节炎同样重要。实验结果为同时抑制软骨炎症和促进软骨修复治疗早期骨关节炎提供了一种新策略。
https://orcid.org/0000-0003-0292-0954(Yu Yangyi)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
余洋溢, 宋卓悦, 廉 强, 丁 康, 李广恒. 腺相关病毒介导p65shRNA和骨形态发生蛋白4协同表达促进软骨细胞的再生[J]. 中国组织工程研究, 2025, 29(17): 3537-3547.
Yu Yangyi , Song Zhuoyue, Lian Qiang, Ding Kang, Li Guangheng . AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(17): 3537-3547.
References [1] MANIVONG S, CULLIER A, AUDIGIé F, et al. New trends for osteoarthritis: biomaterials, models and modeling. Drug Discov Today. 2023;28(3):103488. [2] EMAMI A, NAMDARI H, PARVIZPOUR F, et al. Challenges in osteoarthritis treatment. Tissue Cell. 2023;80:101992. [3] HERMANN W, LAMBOVA S, MULLER-LADNER U. Current treatment options for osteoarthritis. Curr Rheumatol Rev. 2018;14(2):108-116. [4] CHULAY JD, YE GJ, THOMAS DL, et al. Preclinical evaluation of a recombinant adeno-associated virus vector expressing human alpha-1 antitrypsin made using a recombinant herpes simplex virus production method. Hum Gene Ther. 2011;22(2):155-165. [5] KAPLITT MG, FEIGIN A, TANG C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007; 369(9579):2097-2105. [6] MADRY H, CUCCHIARINI M, TERWILLIGER EF, et al. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther. 2003;14(4):393-402. [7] MADRY H, VENKATESAN JK, SCHMITT G, et al. rAAV vectors as safe and efficient tools for the stable delivery of genes to primary human chondrosarcoma cells in vitro and in situ. Sarcoma. 2012;2012:347417. [8] WATSON LEVINGS RS, BROOME TA, SMITH AD, et al. Gene therapy for osteoarthritis: pharmacokinetics of intra-articular self-complementary adeno-associated virus interleukin-1 receptor antagonist delivery in an equine model. Hum Gene Ther Clin Dev. 2018;29(2):90-100. [9] LIM CL, LEE YJ, CHO JH, et al. Immunogenicity and immunomodulatory effects of the human chondrocytes, hChonJ. BMC Musculoskelet Disord. 2017;18(1):199. [10] SOKOLOVE J, LEPUS CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77-94. [11] RIGOGLOU S, PAPAVASSILIOU AG. The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol. 2013;45(11):2580-2584. [12] HENROTIN Y, CLUTTERBUCK AL, ALLAWAY D, et al. Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage. 2010;18(2):141-149. [13] SHAKIBAEI M, JOHN T, SCHULZE-TANZIL G, et al. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73(9):1434-1445. [14] ROMAN-BLAS JA, JIMENEZ SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage. 2006;14(9):839-848. [15] CHOI MC, JO J, PARK J, et al. NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells. 2019;8(7):734. [16] EVANS CH, GHIVIZZANI SC, ROBBINS PD. Osteoarthritis gene therapy in 2022. Curr Opin Rheumatol. 2023;35(1):37-43. [17] KURODA R, USAS A, KUBO S, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 2006;54(2):433-442. [18] MARCU KB, OTERO M, OLIVOTTO E, et al. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11(5):599-613. [19] MATSUMOTO T, COOPER GM, GHARAIBEH B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 2009;60(5):1390-1405. [20] XIAO X, LI J, SAMULSKI RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72(3):2224-2232. [21] LI J, SAMULSKI RJ, XIAO X. Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol. 1997;71(7): 5236-5243. [22] WANG B, LI J, FU FH, et al. Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res. 2009;27(4):421-426. [23] AISENBREY EA, BILOUSOVA G, PAYNE K, et al. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci. 2019;7(12):5388-5403. [24] TIAN K, QI M, WANG L, et al. Two-stage therapeutic utility of ectopically formed bone tissue in skeletal muscle induced by adeno-associated virus containing bone morphogenetic protein-4 gene. J Orthop Surg Res. 2015;10:86. [25] JEON OH, KIM C, LABERGE RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6): 775-781. [26] CHAGANTI RK, LANE NE. Risk factors for incident osteoarthritis of the hip and knee. Curr Rev Musculoskelet Med. 2011;4(3):99-104. [27] HARRIS H, CRAWFORD A. Recognizing and managing osteoarthritis. Nursing. 2015;45(1):36-42; quiz 42-33. [28] KHEZRI K, MALEKI DIZAJ S, RAHBAR SAADAT Y, et al. Osteogenic differentiation of mesenchymal stem cells via curcumin-containing nanoscaffolds. Stem Cells Int. 2021;2021:1520052. [29] VAHEDI P, MOGHADDAMSHAHABI R, WEBSTER TJ, et al. The use of infrapatellar fat pad-derived mesenchymal stem cells in articular cartilage regeneration: a review. Int J Mol Sci. 2021;22(17):9215. [30] MARTEL-PELLETIER J, PELLETIER JP, FAHMI H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum. 2003; 33(3):155-167. [31] YANG Q, TANG Y, IMBROGNO K, et al. AAV-based shRNA silencing of NF-κB ameliorates muscle pathologies in mdx mice. Gene Ther. 2012;19(12):1196-1204. [32] ZHANG Y, PIZZUTE T, PEI M. Anti-inflammatory strategies in cartilage repair. Tissue Eng Part B Rev. 2014;20(6):655-668. [33] MILJKOVIC ND, COOPER GM, MARRA KG. Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartilage. 2008;16(10):1121-1130. [34] JANE JA JR, DUNFORD BA, KRON A, et al. Ectopic osteogenesis using adenoviral bone morphogenetic protein (BMP)-4 and BMP-6 gene transfer. Mol Ther. 2002;6(4):464-470. [35] BRAMLAGE CP, HäUPL T, KAPS C, et al. Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther. 2006; 8(3):R58. [36] WANG D, PRAKASH J, NGUYEN P, et al. Bone morphogenetic protein signaling in vascular disease: anti-inflammatory action through myocardin-related transcription factor A. J Biol Chem. 2012;287(33): 28067-28077. [37] VAN DER KRAAN PM, VAN DEN BERG WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage. 2012;20(3):223-232. [38] BEHRENDT P, FELDHEIM M, PREUSSE-PRANGE A, et al. Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage. 2018;26(2):264-275. |
[1] | 赖鹏宇, 梁 冉, 沈 山. 组织工程技术修复颞下颌关节:问题与挑战[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[3] | 徐田杰, 樊佳欣, 郭小玲, 贾 祥, 赵兴旺, 刘凯楠, 王 茜. 二甲双胍抑制PI3K/AKT/mTOR信号通路保护骨关节炎模型大鼠关节软骨[J]. 中国组织工程研究, 2025, 29(5): 1003-1012. |
[4] | 吴广涛, 秦 刚, 何凯毅, 范以东, 李威材, 朱宝刚, 曹 英. 免疫细胞与膝骨关节炎之间因果作用:一项两样本双向孟德尔随机化分析[J]. 中国组织工程研究, 2025, 29(5): 1081-1090. |
[5] | 水 晶, 何 宇, 江 楠, 徐 坤, 宋丽娟, 丁智斌, 马存根, 李新毅. 星形胶质细胞调节中枢神经系统的髓鞘再生[J]. 中国组织工程研究, 2025, 29(36): 7889-7897. |
[6] | 张晓宇, 韦善文, 方佳炜, 倪 莉. 普鲁士蓝纳米粒子抗氧化恢复退变髓核细胞线粒体功能[J]. 中国组织工程研究, 2025, 29(34): 7318-7325. |
[7] | 赵雪梅, 王 睿, 奥·乌力吉, 包书茵, 江小华. 蒙药沙蓬粗寡糖对小鼠滑膜细胞炎症和凋亡的影响[J]. 中国组织工程研究, 2025, 29(32): 6939-6946. |
[8] | 吴振桦, 张锡玮, 王一品, 李倩倩. 血清血脂7项与骨关节炎的关系:IEU OPEN GWAS数据库欧洲人群的大样本分析[J]. 中国组织工程研究, 2025, 29(32): 7004-7014. |
[9] | 樊佳欣, 贾 祥, 徐田杰, 刘凯楠, 郭小玲, 张 辉, 王 茜. 二甲双胍抑制铁死亡改善骨关节炎模型大鼠的软骨损伤[J]. 中国组织工程研究, 2025, 29(30): 6398-6408. |
[10] | 王万春, 易 军, 严张仁, 杨 悦, 董德刚, 李玉梅. 717解毒合剂重塑细胞外基质稳态促进蝮蛇伤大鼠局部损伤组织的修复[J]. 中国组织工程研究, 2025, 29(30): 6457-6465. |
[11] | 宋雨婷, 文春雷, 李 奕, 柏 雪, 高 鸿, 胡廷菊, 王子君, 严 旭. 心肌细胞外基质重塑对缝隙连接蛋白43及其Ser368位点磷酸化和电传导的影响[J]. 中国组织工程研究, 2025, 29(29): 6212-6218. |
[12] | 孙雅蕙, 王宇峰, 郭 超, 姚俊杰, 纪媛媛, 李中旭, 娄惠娟, 江晶蕾, 孙一萍, 徐 婧, 丛德毓. 推拿对2型糖尿病大鼠骨骼肌细胞外基质胶原沉积的影响[J]. 中国组织工程研究, 2025, 29(26): 5549-5555. |
[13] | 郝茂辰, 马 超, 刘 凯, 柳可心, 孟令婷, 王杏如, 王建忠. 骨关节炎内质网应激关键基因的生物信息学筛选及实验验证[J]. 中国组织工程研究, 2025, 29(26): 5632-5641. |
[14] | 纪雅琼, 宁忠平. 芍药苷对血管紧张素Ⅱ诱导心肌成纤维细胞纤维化的保护作用[J]. 中国组织工程研究, 2025, 29(25): 5382-5389. |
[15] | 周丽君, 张克远, 徐飞虎, 王 茜, 俞 丽, 董士铭, 徐俊宇, 郭宇沨, 马海蓉, 丁 红. 环状RNA SEC24A对骨关节炎滑膜成纤维细胞增殖和凋亡的影响及机制[J]. 中国组织工程研究, 2025, 29(24): 5086-5092. |
近年来,腺相关病毒基因治疗已被证明是治疗骨关节炎的可靠和安全的方法。然而,鉴于骨关节炎的发病机制的复杂性,单一基因操作治疗骨关节炎可能无法产生令人满意的结果。先前的研究表明,核转录因子kB可以抑制骨关节炎软骨细胞中的炎症通路,而骨形态发生蛋白4可以促进软骨再生。实验旨在使用一种可以特异性靶向核转录因子kB的p65短发夹RNA(p65shRNA)与骨形态发生蛋白4一起治疗骨关节炎。#br#
#br#
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程#br#
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||