中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (12): 2421-2428.doi: 10.12307/2025.393

• 骨组织构建 bone tissue construction •    下一篇

利格列汀调控巨噬细胞极化和破骨细胞形成缓解磨损颗粒诱导的骨质溶解

杨  鹏,张  巍,李文明,李文豪,吴泽彬,周  军,耿德春   

  1. 苏州大学附属第一医院骨科,江苏省苏州市  215006

  • 收稿日期:2024-03-28 接受日期:2024-06-21 出版日期:2025-04-28 发布日期:2024-09-09
  • 通讯作者: 耿德春,研究员,苏州大学附属第一医院骨科,江苏省苏州市 215006
  • 作者简介:杨鹏,男,1996年生,安徽省合肥市人,汉族,苏州大学附属第一医院骨科在读硕士,主要从事骨关节外科及骨免疫相关基础研究。
  • 基金资助:
    国家自然科学基金(82272567),项目负责人:耿德春;苏州市卫生健康委项目(GSWS2022002),项目负责人:耿德春;江苏省医学研究项目(ZD2022014),项目负责人:耿德春;苏州市科技项目(SKJY2021067),项目负责人:周军;2023年度苏州市临床重点病种诊疗技术专项项目(LCZX202302),项目负责人:周军

Linagliptin alleviates wear particle-induced inflammatory osteolysis by regulating macrophage polarization and osteoclast formation

Yang Peng, Zhang Wei, Li Wenming, Li Wenhao, Wu Zebin, Zhou Jun, Geng Dechun   

  1. Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
  • Received:2024-03-28 Accepted:2024-06-21 Online:2025-04-28 Published:2024-09-09
  • Contact: Geng Dechun, Researcher, Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
  • About author:Yang Peng, Master candidate, Department of Orthopedics, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
  • Supported by:
    National Natural Science Foundation of China, No. 82272567 (to GDC); Suzhou Municipal Health Commission, No. GSWS2022002 (to GDC); Jiangsu Medical Research Program, No. ZD2022014 (to GDC); Suzhou Science and Technology Project, No. SKJY2021067 (to ZJ); 2023 Special Project of Clinical Key Disease Diagnosis and Treatment Technology in Suzhou City, No. LCZX202302 (to ZJ)

摘要:




文题释义:
利格列汀:是二肽基肽酶 4抑制剂的代表,已注册并有效用于治疗2型糖尿病。研究发现,利格列汀的给药能够降低体内促炎因子(例如肿瘤坏死因子α、白细胞介素1β)的浓度,从而参与保护心脑血管系统、内分泌系统和中枢神经系统的过程。
无菌性假体松动:是与关节置换术相关的最常见并发症之一。病理生理过程包括假体磨损或降解产生的颗粒引起局部炎症反应、继而引起假体周围骨溶解,最终导致假体-骨组织松动。由于术后假体与骨组织界面之间长期活动发生磨损以及假体自身的降解,在局部产生了假体颗粒并聚集,颗粒碎片可以激活单核细胞/巨噬细胞,随后激活的巨噬细胞产生促炎因子等细胞因子,诱导炎症反应,由于这些颗粒往往难以降解,因此骨免疫微环境会不断恶化,破骨细胞加速成熟,导致成骨-破骨失衡,进而导致骨吸收和假体周围骨质溶解的增加。

背景:研究发现,在利格列汀的干预下,巨噬细胞更多的由M1转向M2极化,降低了相关炎性因子的释放,缓解了局部炎症。
目的:探讨利格列汀对巨噬细胞极化、破骨细胞活化及磨损颗粒诱导炎性骨溶解的影响。
方法:(1)细胞实验:①巨噬细胞极化:将RAW264.7细胞分4组培养,对照组细胞加入高糖培养基;M1诱导组加入M1诱导培养基(含脂多糖100 ng/mL和干扰素γ 20 ng/mL的高糖培养基)模拟炎症环境;利格列汀低、高剂量组分别加入50,200 nmol/L利格列汀处理4 h后加入M1诱导培养基。巨噬细胞极化诱导24 h后,分别进行巨噬细胞极化免疫荧光染色和RT-PCR检测。②破骨细胞活化:将RAW264.7细胞分为4组培养,对照组使用高糖培养基培养,破骨细胞诱导组、利格列汀低剂量组及高剂量组进行破骨细胞诱导,待微小破骨细胞成形后,用利格列汀(50,200 nmol/L)分别干预细胞3 d,进行细胞抗酒石酸酸性磷酸酶染色和RT-PCR 检测。(2)动物实验:将24只雄性C57BL/6J小鼠随机分为4组,即假手术组、模型组、利格列汀低剂量组及高剂量组,后3组通过将钛颗粒悬浊液注射至颅骨表面建立颅骨骨溶解模型,从造模后第2天开始,利格列汀低、高剂量组分别灌胃利格列汀(2,10 mg/kg),每天1次,造模3周后,检测血清巨噬细胞极化标志蛋白及炎性因子水平,收集颅骨进行micro-CT扫描、骨参数分析及苏木精-伊红染色评估骨溶解及形态学变化。
结果与结论:①细胞实验:与M1诱导组比较,利格列汀低、高剂量组可显著抑制巨噬细胞的M1极化、促进M2极化(P < 0.01),且以高剂量组效果更显著(P < 0.01)。与破骨诱导组比较,利格列汀低、高剂量组可抑制破骨细胞的活化及骨质吸收,且以高剂量组抑制更显著。与对照组比较,M1诱导组炎性因子mRNA表达升高(P < 0.01),而与M1诱导组相比较,利格列汀低、高剂量组炎性因子mRNA表达显著降低(P < 0.01)。与对照组比较,破骨诱导组破骨功能标志物的mRNA表达升高(P < 0.01);与破骨诱导组比较,利格列汀低、高剂量组破骨功能标志物的mRNA表达降低(P < 0.01),且以高剂量组降低更明显。②动物实验:钛颗粒植入导致小鼠颅骨骨溶解破坏,利格列汀可抑制钛颗粒诱导的骨溶解,其中以高剂量组抑制作用更显著。结果表明利格列汀具有调节巨噬细胞极化、抑制破骨细胞活化及对骨骼系统的保护作用。 
https://orcid.org/0000-0001-5116-0774(杨鹏)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程



关键词: 利格列汀, 巨噬细胞极化, 破骨细胞活化, 磨损颗粒, 无菌性假体松动, 假体周围骨溶解

Abstract: BACKGROUND: Linagliptin exhibits the capacity to regulate macrophage polarization, shifting them from the pro-inflammatory M1 phenotype towards the anti-inflammatory M2 phenotype. This alteration results in a dampened release of inflammatory mediators, thereby mitigating local inflammation. 
OBJECTIVE: To explore the effects of linagliptin on macrophage polarization, osteoclast activation, and inflammatory osteolysis elicited by wear particles.
METHODS: (1) Cell experiments: For macrophage polarization, RAW264.7 cells were cultured and divided into four groups: the control group received high-glucose culture medium; the M1-induced group received M1-inducing culture medium (high-glucose culture medium containing 100 ng/mL lipopolysaccharide and 20 ng/mL interferon-γ) to simulate an inflammatory environment; the low- and high-dose linagliptin groups were treated with 50 and 200 nmol/L linagliptin, respectively, for 4 hours before exposure to M1-inducing culture medium. After 24 hours of macrophage polarization induction, immunofluorescence staining and RT-PCR were performed. For osteoclast activation, RAW264.7 cells were cultured and divided into four groups: the control group was cultured with high-glucose culture medium, the osteoclast-induced group and low- and high-dose linagliptin groups were subjected to osteoclast induction. After osteoclast formation, cells were treated with linagliptin (50 and 200 nmol/L) for 3 days. Subsequently, cell tartrate-resistant acid phosphatase staining and RT-PCR were performed. (2) Animal experiments: Twenty-four male C57BL/6J mice were randomly divided into four groups: sham operation group, model group, low-dose linagliptin group, and high-dose linagliptin group. The model group, low-dose linagliptin group, and high-dose linagliptin group were induced to establish a cranial bone resorption model by injecting titanium particle suspension onto the surface of the skull. Starting from the 2nd day after modeling, the low- and high-dose linagliptin groups were orally administered linagliptin (2 and 10 mg/kg, respectively) once daily. After modeling for 3 weeks, serum macrophage polarization marker protein and inflammatory factor levels were detected; skull samples were collected for micro-CT scanning, bone parameter analysis, and hematoxylin-eosin staining to evaluate osteolysis and morphological changes.
RESULTS AND CONCLUSION: (1) Cell experiments: Both low and high doses of linagliptin significantly suppressed M1 polarization while promoting M2 polarization compared to the M1-induced group (P < 0.01). Notably, the high-dose group exhibited a more pronounced inhibitory effect (P < 0.01). Inflammatory factor mRNA expression was elevated in the M1-induced group compared with the control group (P < 0.01), whereas inflammatory factor mRNA expression was significantly lower in the low- and high-dose linagliptin groups compared with the M1-induced group (P < 0.01). There was a significant upregulation of mRNA expression of osteoclast functional markers in the osteoclast-induced group compared with the control group (P < 0.01). Conversely, both low and high doses of linagliptin led to a substantial downregulation of mRNA expression of these markers compared with the osteoclast-induced group (P < 0.01), with the high-dose group exhibiting a more pronounced reduction. (2) Animal experiments: Titanium particle implantation induced cranial bone resorption damage in mice. Treatment with linagliptin effectively mitigated this bone resorption, with the high-dose group showing superior efficacy. To conclude, linagliptin has been shown to modulate macrophage polarization, inhibit osteoclast activation, and have a protective effect on the skeletal system.   
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

Key words: linagliptin, macrophage polarization, osteoclast activation, abrasion particles, aseptic prosthesis loosening, periprosthetic osteolysis

中图分类号: