中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (3): 579-589.doi: 10.12307/2025.140

• 骨与关节综述 bone and joint review • 上一篇    下一篇

椎间盘退变中的力学信号转导蛋白

高夕林1,2,吴  思1,2,张  超1,2,朱立国3,符碧峰1,2,王  平1,2   

  1. 1天津中医药大学第一附属医院,天津市   300193;2国家中医针灸临床医学研究中心,天津市   300193;3中国中医科学院望京医院,北京市   100102
  • 收稿日期:2023-11-30 接受日期:2024-03-06 出版日期:2025-01-28 发布日期:2024-06-04
  • 通讯作者: 符碧峰,博士,主治医师,天津中医药大学第一附属医院骨伤科,天津市 300193;国家中医针灸临床医学研究中心,天津市 300193 王平,博士,主任医师,博士生导师,天津中医药大学第一附属医院骨伤科,天津市300193;国家中医针灸临床医学研究中心,天津市 300193
  • 作者简介:高夕林,男,1997年生,河北省唐山市人,汉族,天津中医药大学在读博士,主要从事骨与关节疾病临床研究。
  • 基金资助:
    天津市科技计划项目(21JCQNJC01690),项目负责人:吴思;天津市名中医传承工作室建设项目(881022),项目负责人:王平;国家重点研发计划项目(2021YFC1712802),项目负责人:朱立国;天津市教委科研计划项目(2023KJ156),项目负责人:符碧峰;京津冀中医药协同发展专科联盟建设项目

Mechanotransduction proteins in intervertebral disc degeneration

Gao Xilin1, 2, Wu Si1, 2, Zhang Chao1, 2, Zhu Liguo3, Fu Bifeng1, 2, Wang Ping1, 2   

  1. 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; 2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; 3Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China

  • Received:2023-11-30 Accepted:2024-03-06 Online:2025-01-28 Published:2024-06-04
  • Contact: Fu Bifeng, PhD, Attending physician, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China Wang Ping, PhD, Chief physician, Doctoral supervisor, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
  • About author:Gao Xilin, Doctoral candidate, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
  • Supported by:
    Tianjin Science and Technology Plan Project, No. 21JCQNJC01690 (to WS); Tianjin Famous Traditional Chinese Medicine Inheritance Studio Construction Project, No. 881022 (to WP); National Key Research and Development Program Topic, No. 2021YFC1712802 (to ZLG); Tianjin Education Commission Research Plan Project, No. 2023KJ156 (to FBF); Construction Project of Beijing-Tianjin-Hebei Traditional Chinese Medicine Specialized Alliance for Collaborative Development

摘要:

文题释义
力学信号转导蛋白:是一类能够感知并响应机械力,将力学信号转化为生化信号的蛋白质,这类蛋白质在机械力的作用下发生构象变化或化学改变(如磷酸化),从而激活相关信号通路,影响细胞内的生化活动和基因表达。
椎间盘退变:是指椎间盘受到机械、营养及遗传因素的影响发生病理性改变的过程。

摘要
背景:近年来的研究表明椎间盘退变与异常压力负荷密切相关,而力学信号转导蛋白在其中发挥了关键作用。
目的:探讨力学信号转导蛋白在异常机械力刺激诱导椎间盘退变的力化学信号换能过程中发挥的作用及机制,总结目前靶向力学信号延缓椎间盘退变的治疗策略。
方法:以“椎间盘,髓核,纤维环,软骨终板,细胞,力,信号转导,蛋白,生物力学”为中文检索词,以“intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanical stimulation,signal transduction,protein,biomechanics”为英文检索词,检索PubMed、CNKI数据库中的相关文献,最终纳入88篇文献进行综述。
结果与结论:椎间盘细胞能通过多种力学信号转导蛋白感知外界机械刺激并将其转化为细胞内生物学反应,这些转导蛋白主要包括细胞外基质中的胶原蛋白、细胞膜表面受体(如整合素及离子通道)、细胞骨架结构蛋白等。力学信号转导蛋白调控力化学信号换能的过程主要包括多个通路的激活,如PI3K/AKT信号通路、核因子κB信号通路、Ca2+/Calpain2/Caspase3通路等。力学信号转导蛋白在椎间盘细胞机械信号换能中发挥了关键作用,这些蛋白表达异常或由此导致的细胞外基质环境改变会破坏椎间盘细胞的力学平衡,引发椎间盘退变。深入研究椎间盘细胞力学信号转导蛋白的表达及调控机制,寻找关键的病理环节和治疗靶点,对开发椎间盘退变治疗策略具有重要意义,目前靶向力学信号延缓椎间盘退变的策略主要包括对转导蛋白的调控、对细胞外基质的改良等,然而这方面研究还处于初级阶段,随着研究的不断深入,力学信号转导蛋白调控椎间盘退变有望实现新的突破。


https://orcid.org/0009-0003-3240-1968 (高夕林) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 力学信号转导, 蛋白质, 椎间盘退变, 靶向力学信号, 生物力学

Abstract: BACKGROUND: Recent research indicates that disc degeneration is closely related to abnormal stress load, and mechanotransduction proteins play a key role in it. 
OBJECTIVE: To investigate the role and mechanism of mechanotransduction proteins in the mechanotransduction process induced by abnormal mechanical stimulation in disc degeneration, and to summarize the current treatment strategies targeting mechanotransduction to delay intervertebral disc degeneration.
METHODS: Using “intervertebral disc, nucleus pulposus, annulus fibrosus, cartilaginous endplate, cell, mechanics, signal transduction, protein, biomechanics” as Chinese search terms, and “intervertebral disc, nucleus pulposus, annulus fibrosus, cartilaginous endplate, cell, mechanical stimulation, signal transduction, protein, biomechanics” as English search terms, relevant literature in the PubMed and CNKI databases was searched. A total of 88 articles were ultimately included for review. 
RESULTS AND CONCLUSION: Disc cells can sense external mechanical stimulation through various mechanotransduction proteins and convert it into biological responses within the cells. These transduction proteins mainly include collagen proteins in the extracellular matrix, cell membrane surface receptors (such as integrins and ion channels), and cytoskeleton structural proteins. Their regulation of mechanotransduction processes primarily involves the activation of multiple pathways, such as the PI3K/AKT signaling pathway, nuclear factor-kB signaling pathway, and Ca2+/Calpain2/Caspase3 pathway. Mechanotransduction proteins play a key role in the mechanotransduction of disc cells. Abnormal expression of these proteins or resulting changes in the extracellular matrix environment can disrupt the mechanical balance of disc cells, leading to disc degeneration. In-depth study of the expression and regulatory mechanisms of mechanotransduction proteins in disc cells, and identification of key pathological links and therapeutic targets, is of significant importance for developing treatment strategies for disc degeneration. Current strategies to delay intervertebral disc degeneration by targeting mechanotransduction mainly include regulation of transduction proteins and improvement of the extracellular matrix. However, research in this area is still in its early stages. As research continues, new breakthroughs are expected in the regulation of disc degeneration by mechanotransduction proteins.

Key words: mechanotransduction, protein, intervertebral disc degeneration, targeting mechanical signal, biomechanics

中图分类号: