中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (3): 579-589.doi: 10.12307/2025.140
• 骨与关节综述 bone and joint review • 上一篇 下一篇
高夕林1,2,吴 思1,2,张 超1,2,朱立国3,符碧峰1,2,王 平1,2
收稿日期:2023-11-30
									
				
									
				
											接受日期:2024-03-06
									
				
											出版日期:2025-01-28
									
				
											发布日期:2024-06-04
									
			通讯作者:
					符碧峰,博士,主治医师,天津中医药大学第一附属医院骨伤科,天津市 300193;国家中医针灸临床医学研究中心,天津市   300193
王平,博士,主任医师,博士生导师,天津中医药大学第一附属医院骨伤科,天津市300193;国家中医针灸临床医学研究中心,天津市   300193
												作者简介:高夕林,男,1997年生,河北省唐山市人,汉族,天津中医药大学在读博士,主要从事骨与关节疾病临床研究。
				
							基金资助:Gao Xilin1, 2, Wu Si1, 2, Zhang Chao1, 2, Zhu Liguo3, Fu Bifeng1, 2, Wang Ping1, 2
Received:2023-11-30
									
				
									
				
											Accepted:2024-03-06
									
				
											Online:2025-01-28
									
				
											Published:2024-06-04
									
			Contact:
					Fu Bifeng, PhD, Attending physician, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
Wang Ping, PhD, Chief physician, Doctoral supervisor, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China   
												About author:Gao Xilin, Doctoral candidate, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China				
							Supported by:摘要:
	
	文题释义:
力学信号转导蛋白:是一类能够感知并响应机械力,将力学信号转化为生化信号的蛋白质,这类蛋白质在机械力的作用下发生构象变化或化学改变(如磷酸化),从而激活相关信号通路,影响细胞内的生化活动和基因表达。
椎间盘退变:是指椎间盘受到机械、营养及遗传因素的影响发生病理性改变的过程。
摘要
背景:近年来的研究表明椎间盘退变与异常压力负荷密切相关,而力学信号转导蛋白在其中发挥了关键作用。
目的:探讨力学信号转导蛋白在异常机械力刺激诱导椎间盘退变的力化学信号换能过程中发挥的作用及机制,总结目前靶向力学信号延缓椎间盘退变的治疗策略。
方法:以“椎间盘,髓核,纤维环,软骨终板,细胞,力,信号转导,蛋白,生物力学”为中文检索词,以“intervertebral disc,nucleus pulposus,annulus fibrosus,cartilaginous endplate,cell,mechanical stimulation,signal transduction,protein,biomechanics”为英文检索词,检索PubMed、CNKI数据库中的相关文献,最终纳入88篇文献进行综述。
结果与结论:椎间盘细胞能通过多种力学信号转导蛋白感知外界机械刺激并将其转化为细胞内生物学反应,这些转导蛋白主要包括细胞外基质中的胶原蛋白、细胞膜表面受体(如整合素及离子通道)、细胞骨架结构蛋白等。力学信号转导蛋白调控力化学信号换能的过程主要包括多个通路的激活,如PI3K/AKT信号通路、核因子κB信号通路、Ca2+/Calpain2/Caspase3通路等。力学信号转导蛋白在椎间盘细胞机械信号换能中发挥了关键作用,这些蛋白表达异常或由此导致的细胞外基质环境改变会破坏椎间盘细胞的力学平衡,引发椎间盘退变。深入研究椎间盘细胞力学信号转导蛋白的表达及调控机制,寻找关键的病理环节和治疗靶点,对开发椎间盘退变治疗策略具有重要意义,目前靶向力学信号延缓椎间盘退变的策略主要包括对转导蛋白的调控、对细胞外基质的改良等,然而这方面研究还处于初级阶段,随着研究的不断深入,力学信号转导蛋白调控椎间盘退变有望实现新的突破。
	
中图分类号:
高夕林, 吴 思, 张 超, 朱立国, 符碧峰, 王 平. 椎间盘退变中的力学信号转导蛋白[J]. 中国组织工程研究, 2025, 29(3): 579-589.
Gao Xilin, Wu Si Zhang Chao Zhu Liguo, Fu Bifeng, Wang Ping. Mechanotransduction proteins in intervertebral disc degeneration[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(3): 579-589.




| [1] BAKHSHANDEH B, SORBONI SG, RANJBAR N, et al. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res. 2023; 431(2):113766. [2] 罗卓荆,杨柳,王迪.我国椎间盘退变的生物学研究成就及展望[J].空军军医大学学报,2023,44(6):481-485+489. [3] CHEN S, FU P, WU H, et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017;370(1):53-70. [4] 房晓阳,唐田,王楠,等.椎间盘全层纤维环修复与再生治疗[J].中国组织工程研究,2022,26(10):1582-1587. [5] 孙尚,赵振达,蒋嫒,等.力学刺激在椎体软骨终板退变中的作用及机制[J].医用生物力学,2021,36(4):652-657. [6] DESMOULIN GT, PRADHAN V, MILNER TE. Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics. Spine (Phila Pa 1976). 2020;45(8):E457-E464. [7] ZHU L, ZHANG C, PENG L, et al. A case report on digital preoperative design, clinical application and finite element analysis for a patient with ankylosing spondylitis kyphosis. Front Bioeng Biotechnol. 2023; 11:1220102. [8] HYNES RO, RUOSLAHTI E, SPRINGER TA. Reflections on Integrins-Past, Present, and Future: The Albert Lasker Basic Medical Research Award. JAMA. 2022;328(13):1291-1292. [9] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55-60. [10] ZEHR JD, QUADRILATERO J, CALLAGHAN JP. Initiation and accumulation of loading induced changes to native collagen content and microstructural damage in the cartilaginous endplate. Spine J. 2024;24(1):161-171. [11] SCHNAKE KJ, PUTZIER M, HAAS NP, et al. Mechanical concepts for disc regeneration. Eur Spine J. 2006;15 Suppl 3(Suppl 3):S354-360. [12] BOYD LM, CARTER AJ. Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur Spine J. 2006;15 Suppl 3(Suppl 3):S414-421. [13] ZHANG K, DING W, SUN W, et al. Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway. Apoptosis. 2016;21(1):13-24. [14] WANG H, ZHANG W, CAI Y, et al. Moderate mechanical stimulation antagonizes inflammation of annulus fibrosus cells through YAP-mediated suppression of NF-κB signaling. J Orthop Res. 2023;41(12): 2667-2684. [15] KE W, WANG B, HUA W, et al. The distinct roles of myosin IIA and IIB under compression stress in nucleus pulposus cells. Cell Prolif. 2021; 54(2):e12987. [16] SARASWATHIBHATLA A, INDANA D, CHAUDHURI O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7): 495-516. [17] THEOCHARIS AD, SKANDALIS SS, GIALELI C, et al. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4-27. [18] ZHANG S, LIU W, CHEN S, et al. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res. 2022;390(1):1-22. [19] LEITINGER B. Transmembrane collagen receptors. Annu Rev Cell Dev Biol. 2011;27:265-290. [20] XU H, ZHANG Y, ZHANG Y, et al. A novel rat model of annulus fibrosus injury for intervertebral disc degeneration. Spine J. 2024;24(2): 373-386. [21] AHSAN R, TAJIMA N, CHOSA E, et al. Biochemical and morphological changes in herniated human intervertebral disc. J Orthop Sci. 2001; 6(6):510-518. [22] ZHOU X, TAO Y, CHEN E, et al. Genipin-cross-linked type II collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposus-like cells. J Biomed Mater Res A. 2018;106(5):1258-1268. [23] BASHEY RI, MARTINEZ-HERNANDEZ A, JIMENEZ SA. Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ Res. 1992;70(5):1006-1017. [24] AUMAILLEY M. The laminin family. Cell Adh Migr. 2013;7(1):48-55. [25] NAHA A, DRISCOLL TP. Fibronectin sensitizes activation of contractility, YAP, and NF-κB in nucleus pulposus cells. J Orthop Res. 2024;42(2): 434-442. [26] CYRIL D, GIUGNI A, BANGAR SS, et al. Elastic Fibers in the Intervertebral Disc: From Form to Function and toward Regeneration. Int J Mol Sci. 2022;23(16):8931. [27] MERCURI J, ADDINGTON C, PASCAL R 3RD, et al. Development and initial characterization of a chemically stabilized elastin-glycosaminoglycan-collagen composite shape-memory hydrogel for nucleus pulposus regeneration. J Biomed Mater Res A. 2014;102(12):4380-4393. [28] CAMPBELL ID, HUMPHRIES MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3):a004994. [29] KANCHANAWONG P, CALDERWOOD DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol. 2023;24(2):142-161. [30] XIA M, ZHU Y. Expression of integrin subunits in the herniated intervertebral disc. Connect Tissue Res. 2008;49(6):464-469. [31] GAO G, HE J, NONG L, et al. Periodic mechanical stress induces the extracellular matrix expression and migration of rat nucleus pulposus cells by upregulating the expression of intergrin α1 and phosphorylation of downstream phospholipase Cγ1. Mol Med Rep. 2016;14(3):2457-2464. [32] KANDA Y, YURUBE T, MORITA Y, et al. Delayed notochordal cell disappearance through integrin α5β1 mechanotransduction during ex-vivo dynamic loading-induced intervertebral disc degeneration. J Orthop Res. 2021;39(9):1933-1944. [33] ZHENG L, CAO Y, NI S, et al. Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging. Bone Res. 2018;6:21. [34] XU Z, ZHENG J, ZHANG Y, et al. Increased Expression of Integrin Alpha 6 in Nucleus Pulposus Cells in Response to High Oxygen Tension Protects against Intervertebral Disc Degeneration. Oxid Med Cell Longev. 2021; 2021:8632823. [35] YULIS M, KUSTERS DHM, NUSRAT A. Cadherins: cellular adhesive molecules serving as signalling mediators. J Physiol. 2018;596(17): 3883-3898. [36] HWANG PY, JING L, MICHAEL KW, et al. N-Cadherin-Mediated Signaling Regulates Cell Phenotype for Nucleus Pulposus Cells of the Intervertebral Disc. Cell Mol Bioeng. 2015;8(1):51-62. [37] LI P, ZHANG R, WANG L, et al. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture. Biosci Rep. 2017;37(2): BSR20160582. [38] ZHOU H, SHI J, ZHANG C, et al. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture. Biosci Rep. 2018; 38(1):BSR20171551. [39] KE W, LIAO Z, LIANG H, et al. Stiff Substrate Induces Nucleus Pulposus Cell Ferroptosis via YAP and N-Cadherin Mediated Mechanotransduction. Adv Healthc Mater. 2023;12(23):e2300458. [40] WANG J, JIANG J, YANG X, et al. Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-β-catenin mechanotransduction complex. Cell Rep. 2022;38(6):110342. [41] 张珂诚,李聪,陈知行.力信号转导的基本元件:机械力敏感离子通道的研究进展[J].生命科学,2021,33(2):205-222. [42] SZCZOT M, NICKOLLS AR, LAM RM, et al. The Form and Function of PIEZO2. Annu Rev Biochem. 2021;90:507-534. [43] SHI S, KANG XJ, ZHOU Z, et al. Excessive mechanical stress-induced intervertebral disc degeneration is related to Piezo1 overexpression triggering the imbalance of autophagy/apoptosis in human nucleus pulpous. Arthritis Res Ther. 2022;24(1):119. [44] WU J, CHEN Y, LIAO Z, et al. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration. Mol Ther. 2022;30(10):3241-3256. [45] LIU C, GAO X, LOU J, et al. Aberrant mechanical loading induces annulus fibrosus cells apoptosis in intervertebral disc degeneration via mechanosensitive ion channel Piezo1. Arthritis Res Ther. 2023; 25(1):117. [46] DING B, XIAO L, XU H. YAP1 controls degeneration of human cartilage chondrocytes in response to mechanical tension. Cell Biol Int. 2022; 46(10):1637-1648. [47] 邹文娟,黄桂芳,康利军.TRP通道在生物体对机械性刺激响应中的功能及作用机制[J].浙江大学学报(医学版),2012,41(2):222-228. [48] KRUPKOVA O, ZVICK J, WUERTZ-KOZAK K. The role of transient receptor potential channels in joint diseases. Eur Cell Mater. 2017; 34:180-201. [49] EASSON GWD, SAVADIPOUR A, ANANDARAJAH A, et al. Modulation of TRPV4 protects against degeneration induced by sustained loading and promotes matrix synthesis in the intervertebral disc. FASEB J. 2023;37(2):e22714. [50] CAMBRIA E, HEUSSER S, SCHEUREN AC, et al. TRPV4 mediates cell damage induced by hyperphysiological compression and regulates COX2/PGE2 in intervertebral discs. JOR Spine. 2021;4(3):e1149. [51] 薛荣亮,李思远.细胞骨架与机械信号传导:椎间盘突出机制研究的新靶点[J].中国疼痛医学杂志,2016,22(5):326-328. [52] PRITCHARD S, ERICKSON GR, GUILAK F. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton. Biophys J. 2002;83(5):2502-2510. [53] YU SJ, QIU GX, BURTON Y, et al. [Expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro]. Zhonghua Wai Ke Za Zhi. 2005;43(24):1605-1608. [54] LI S, JIA X, DUANCE VC, et al. The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study. Eur Cell Mater. 2011;21: 508-522. [55] ZHANG X, SHU S, FENG Z, et al. Microtubule stabilization promotes the synthesis of type 2 collagen in nucleus pulposus cell by activating hippo-yap pathway. Front Pharmacol. 2023;14:1102318. [56] LORETO C, MUSUMECI G, CASTORINA A, et al. Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann Anat. 2011;193(2):156-162. [57] TSURUTA D, JONES JC. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J Cell Sci. 2003;116(Pt 24):4977-4984. [58] CHAKRABORTY S, NJAH K, POBBATI AV, et al. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway. Cell Rep. 2017;18(10):2464-2479. [59] 詹永通,吴桂豪,范旭红,等.Hippo-YAP信号通路调控细胞衰老的分子机制[J].中国病理生理杂志,2022,38(5):920-931. [60] 鲍远,聂铭博,施佳,等.YAP介导的力学信号转导在血管生成中的研究进展[J].医学综述,2020,26(3):438-442. [61] ZHANG C, WANG F, XIE Z, et al. Dysregulation of YAP by the Hippo pathway is involved in intervertebral disc degeneration, cell contact inhibition, and cell senescence. Oncotarget. 2017;9(2):2175-2192. [62] WANG Y, BAI B, HU Y, et al. Hydrostatic Pressure Modulates Intervertebral Disc Cell Survival and Extracellular Matrix Homeostasis via Regulating Hippo-YAP/TAZ Pathway. Stem Cells Int. 2021;2021: 5626487. [63] DENG Y, WU A, LI P, et al. Yap1 Regulates Multiple Steps of Chondrocyte Differentiation during Skeletal Development and Bone Repair. Cell Rep. 2016;14(9):2224-2237. [64] DENG Y, LU J, LI W, et al. Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat Commun. 2018; 9(1):4564. [65] 齐颖新.细胞核与应力信号转导[J].医用生物力学,2022,37(3): 385-388. [66] GUILLUY C, OSBORNE LD, VAN LANDEGHEM L, et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 2014;16(4):376-381. [67] XU X, WANG D, ZHENG C, et al. Progerin accumulation in nucleus pulposus cells impairs mitochondrial function and induces intervertebral disc degeneration and therapeutic effects of sulforaphane. Theranostics. 2019;9(8):2252-2267. [68] WU CZ, OU DQ, RONG LM, et al. Expression of lamin A/C protein in degenerated human intervertebral disc. Eur Rev Med Pharmacol Sci. 2018;22(22):7607-7613. [69] 欧定强,吴承志,刘钰瑜,等.A型核纤层蛋白在腰椎退行性疾病中的表达及其意义[J].新医学,2015,46(11):724-727. [70] 张波.基于MAPK/ERK/mTOR通路探讨牵张力调节自噬延缓椎间盘退变的作用机制[D].济南:山东中医药大学,2023. [71] LI S, JIA X, DUANCE VC, et al. The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study. Eur Cell Mater. 2011;21: 508-522. [72] LAZARO-PACHECO D, MOHSENI M, RUDD S, et al. The role of biomechanical factors in models of intervertebral disc degeneration across multiple length scales. APL Bioeng. 2023;7(2):021501. [73] SAGGESE T, THAMBYAH A, WADE K, et al. Differential Response of Bovine Mature Nucleus Pulposus and Notochordal Cells to Hydrostatic Pressure and Glucose Restriction. Cartilage. 2020;11(2):221-233. [74] ALINI M, DIWAN AD, ERWIN WM, et al. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine. 2023;6(1):e1230. [75] DAI J, XING Y, XIAO L, et al. Microfluidic Disc-on-a-Chip Device for Mouse Intervertebral Disc-Pitching a Next-Generation Research Platform To Study Disc Degeneration. ACS Biomater Sci Eng. 2019;5(4): 2041-2051. [76] GROWNEY KALAF EA, SELL SA, BLEDSOE JG. Developing a mechanical and chemical model of degeneration in young bovine lumbar intervertebral disks and reversing loss in mechanical function. J Spinal Disord Tech. 2014;27(5):E168-175. [77] BEATTY AM, BOWDEN AE, BRIDGEWATER LC. Functional Validation of a Complex Loading Whole Spinal Segment Bioreactor Design. J Biomech Eng. 2016;138(6):064501. [78] XU HG, ZHENG Q, SONG JX, et al. Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk. Osteoarthritis Cartilage. 2016;24(1):158-168. [79] DU X, WANG X, CUI K, et al. Tanshinone IIA and Astragaloside IV Inhibit miR-223/JAK2/STAT1 Signalling Pathway to Alleviate Lipopolysaccharide-Induced Damage in Nucleus Pulposus Cells. Dis Markers. 2021;2021:6554480. [80] ZHAO R, YANG L, HE S, et al. Nucleus pulposus cell senescence is regulated by substrate stiffness and is alleviated by LOX possibly through the integrin β1-p38 MAPK signaling pathway. Exp Cell Res. 2022;417(2):113230. [81] ZHOU X, WANG J, FANG W, et al. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater. 2018;71:496-509. [82] YANG JJ, LIN YY, CHAO KH, et al. Gelatin-Poly (γ-Glutamic Acid) Hydrogel as a Potential Adhesive for Repair of Intervertebral Disc Annulus Fibrosus: Evaluation of Cytocompatibility and Degradability. Spine (Phila Pa 1976). 2021;46(4):E243-E249. [83] DEWLE A, RAKSHASMARE P, SRIVASTAVA A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS Appl Bio Mater. 2021;4(2): 1238-1251. [84] YANG XX, YIP CH, ZHAO S, et al. A bio-inspired nano-material recapitulating the composition, ultra-structure, and function of the glycosaminoglycan-rich extracellular matrix of nucleus pulposus. Biomaterials. 2023;293:121991. [85] OKORO PD, FRAYSSINET A, DE OLIVEIRA S, et al. Combining biomimetic collagen/hyaluronan hydrogels with discogenic growth factors promotes mesenchymal stroma cell differentiation into Nucleus Pulposus like cells. Biomater Sci. 2023;11(24):7768-7783. [86] LUO H, WANG Z, HE Z, et al. Injectable chondroitin sulfate-grafted self-antioxidant hydrogels ameliorate nucleus pulposus degeneration against overactive inflammation. Biomater Sci. 2023;11(10):3629-3644. [87] CHEN J, ZHU H, ZHU Y, et al. Injectable self-healing hydrogel with siRNA delivery property for sustained STING silencing and enhanced therapy of intervertebral disc degeneration. Bioact Mater. 2021;9:29-43. [88] BAO J, GAO W, ZHANG W, et al. Fibrin glue delivery system containing rhein ameliorates intervertebral disc degeneration by anti-inflammatory efficacy. J Orthop Surg Res. 2023;18(1):485. | 
| [1] | 孙晓君, 王华明, 张德宏, 宋学文, 黄 晋, 张 辰, 裴生太. 有限元法在儿童发育性髋关节发育不良及治疗中的作用[J]. 中国组织工程研究, 2025, 29(9): 1897-1904. | 
| [2] | 余 帅, 刘家伟, 朱 彬, 潘 檀, 李兴龙, 孙广峰, 于海洋, 丁 亚, 王宏亮. 小分子药物治疗骨关节炎的热点问题及应用前景[J]. 中国组织工程研究, 2025, 29(9): 1913-1922. | 
| [3] | 李良奎, 黄永灿, 王鹏, 于滨生. 颈椎前路椎体骨化物可控前移融合对后纵韧带骨化物和内植物影响的有限元分析[J]. 中国组织工程研究, 2025, 29(9): 1761-1767. | 
| [4] | 徐 彪, 路 坦, 姜亚琼, 阴玉娇. 有限元分析不同程度冈上肌断裂对肩关节应力的影响[J]. 中国组织工程研究, 2025, 29(9): 1768-1774. | 
| [5] | 周金海, 李江伟, 王序全, 庄 颖, 赵 瑛, 杨渝勇, 王嘉嘉, 杨 阳, 周仕炼. 不同骨强度下全膝置换过程中发生股骨前皮质切迹的三维有限元分析[J]. 中国组织工程研究, 2025, 29(9): 1775-1782. | 
| [6] | 付恩洪, 杨 行, 梁 成, 张小刚, 张亚丽, 靳忠民. 基于OpenSim预测青少年跖屈肌无力的下肢生物力学行为[J]. 中国组织工程研究, 2025, 29(9): 1789-1795. | 
| [7] | 赵嘉诚, 任诗齐, 祝 秦, 刘佳佳, 朱 翔, 杨 洋. 原发性骨质疏松潜在生物标志物的生物信息学分析[J]. 中国组织工程研究, 2025, 29(8): 1741-1750. | 
| [8] | 芦劼明, 李亚静, 杜培洁, 徐冬青. 
	人工和天然草地对青年女性跳跃落地时下肢生物力学表现的影响
[J]. 中国组织工程研究, 2025, 29(6): 1101-1107. | 
| [9] | 张 帅, 李子春, 徐亦豪, 谢晓峰, 郭忠圣, 赵清扬. 经颅磁声电刺激强度对小鼠前额叶皮质网络可塑性的影响[J]. 中国组织工程研究, 2025, 29(6): 1108-1117. | 
| [10] | 钱 琨, 李子卿, 孙 水. 内质网应激与常见退行性骨骼疾病的发生与发展[J]. 中国组织工程研究, 2025, 29(6): 1285-1295. | 
| [11] | 项 攀, 车艳军, 罗宗平. 压应力激活SOST/Wnt/β-catenin通路诱导软骨终板细胞退变[J]. 中国组织工程研究, 2025, 29(5): 951-957. | 
| [12] | 丁至立, 黄 杰, 蒋 强, 李土胜, 刘 江, 丁 宇. X射线透视引导下不同方式建立兔椎间盘退变模型的结果对比[J]. 中国组织工程研究, 2025, 29(5): 995-1002. | 
| [13] | 张艺璇, 李东娜, 刘春艳. 牙周炎的病理过程、炎症反应及相关生物标志物:多组学分析[J]. 中国组织工程研究, 2025, 29(35): 7601-7610. | 
| [14] | 杨祎铖, 郑智臻, 梁霜雪, 吴成亮, 杜芸芸. 篮球鞋功能参数对人体运动生物力学的影响与启示[J]. 中国组织工程研究, 2025, 29(35): 7620-7628. | 
| [15] | 苏永昆, 孙 红, 刘 淼, 杨 华, 李青松. 开发纳米水凝胶系统搭载新型抗氧化剂与抗氧化剂联合治疗椎间盘退变[J]. 中国组织工程研究, 2025, 29(34): 7376-7384. | 
1.1.7 检索策略 中英文数据库检索策略,见图1。
	
	
	
	
	
	
文题释义:#br# 力学信号转导蛋白:是一类能够感知并响应机械力,将力学信号转化为生化信号的蛋白质,这类蛋白质在机械力的作用下发生构象变化或化学改变(如磷酸化),从而激活相关信号通路,影响细胞内的生化活动和基因表达。#br# 椎间盘退变:是指椎间盘受到机械、营养及遗传因素的影响发生病理性改变的过程。#br# #br# 中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||