中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (3): 493-502.doi: 10.12307/2025.129

• 骨科植入物 orthopedic implant • 上一篇    下一篇

基于Citespace对人工智能在骨创伤研究的可视化分析

宋浩然1,2,张玉强1,2,谷  娜3,智晓东1,2,王  伟1,2   

  1. 锦州医科大学附属第一医院,1骨科,3放射科,辽宁省锦州市   121000;2锦州医科大学骨外科学研究所,辽宁省锦州市   121000
  • 收稿日期:2023-11-27 接受日期:2024-01-05 出版日期:2025-01-28 发布日期:2024-06-03
  • 通讯作者: 王伟,博士,主任医师,教授,锦州医科大学附属第一医院骨科,辽宁省锦州市 121000;锦州医科大学骨外科学研究所,辽宁省锦州市 121000
  • 作者简介:宋浩然,男,1997年生,黑龙江省大庆市人,汉族,锦州医科大学在读硕士,主要从事人工智能与骨损伤相关研究。
  • 基金资助:
    锦州医科大学校企合作基金项目(2020002),项目负责人:王伟;锦州医科大学大学生创新创业训练计划项目(X202210160044),项目
    负责人:张玉强;锦州市指导性科技计划项目(JZ2023B090),项目负责人:张玉强;锦州医科大学横向课题项目(FSHX202403),项目负责人:王伟

Visualization analysis of artificial intelligence in bone trauma research based on Citespace

Song Haoran1, 2, Zhang Yuqiang1, 2, Gu Na3, Zhi Xiaodong1, 2, Wang Wei1, 2   

  1. 1Department of Orthopedics, 3Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China; 2Institute of Osteology, Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
  • Received:2023-11-27 Accepted:2024-01-05 Online:2025-01-28 Published:2024-06-03
  • Contact: Wang Wei, MD, Chief physician, Professor, Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China; Institute of Osteology, Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
  • About author:Song Haoran, Master candidate, Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China; Institute of Osteology, Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
  • Supported by:
    Jinzhou Medical University School-Enterprise Cooperation Fund Project, No. 2020002 (to WW); Innovation and Entrepreneurship Training Program for College Students at Jinzhou Medical University, No. X202210160044 (to ZYQ); Jinzhou Guiding Science and Technology Plan Project, No. JZ2023B090 (to ZYQ); Horizontal Project of Jinzhou Medical University, No. FSHX202403 (to WW) 

摘要:


文题释义

Citespace:译名为“引文空间”,是由美国华裔科学家陈超美博士开发,用于可视化和分析科学文献的软件工具。Citespace基于文献的引用关系构建一个科学知识的网络,并通过可视化的手段来科学地呈现某个领域文献数据的结构、规律和分布情况,帮助研究人员更好地理清学科领域的知识架构、研究热点及发展趋势,为今后研究工作提供有价值的参考和指导。
骨创伤:是指骨骼系统受到外力作用或其他因素引起的损伤或破坏。它可以包括骨折、骨裂、骨撕裂及骨压迫性损伤等。骨创伤通常会导致疼痛、肿胀及活动受限等症状,并可能引起骨折、骨不连及骨感染等并发症。

摘要
背景:人工智能在医疗领域的发展日益迅速,在骨创伤领域的应用研究不断增多。文章旨在通过文献计量学分析,分析近年来人工智能在骨创伤领域中的研究热点,并预测未来的研究趋势。
目的:总结人工智能技术在骨创伤领域的应用发展历程、研究现状、热点和未来发展趋势,以期为今后的研究提供新的见解。
方法:选择Web of Science 核心集数据库中,时间跨度设为自建库至2023年8月,检索人工智能、机器学习、深度学习应用于骨创伤相关的文献420篇。通过人工筛选,导出与文章相关的文献共202篇,采用Citespace软件进行国家、机构、被引期刊和引文分析等的合作和关键词的共现等可视化分析。
结果与结论:①分析筛选后纳入的202篇文献,总体发文量呈上升趋势,且在未来研究潜力巨大。研究中心性最高和发文量排名第一的国家均为美国。加州大学(美国)是发文量最多的研究机构。②人工智能在骨创伤研究中最常用的前5个关键词是深度学习、人工智能、骨密度、机器学习、诊断,中心性最高的关键词为骨密度,关键词数量最多的为深度学习。③共被引频次前10位的参考文献分别从多个方面介绍了人工智能技术应用于骨创伤领域诊断的可行性研究,其中8篇涉及骨关节损伤与深卷积神经网络,1篇涉及深度学习在CT检查中检测骨质疏松从而预防脆性骨折,1篇通过人工智能识别皮肤纹理变的特征应用于骨的特征性识别的相关性研究。④今后,人工智能的研究热点将主要集中在骨关节创伤和骨质疏松引发的骨折特异性研究上,未来研究趋势主要集中在提升人工智能算法的性能上,使用人工智能新技术对骨损伤进行精准划分和快速高效诊断,尤其是针对复杂和隐匿性骨折的诊断,通过建立有限元分析模型,实现对骨创伤的更加标准化评估。


https://orcid.org/0000-0003-2572-5975 (王伟) 


中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 人工智能, 骨创伤, 骨折, 机器学习, 深度学习, 文献计量学, Web of Science, 影像诊断, Citespace, 可视化分析

Abstract: BACKGROUND: The development of artificial intelligence in the medical field is rapidly advancing, with increasing research on its applications in the field of bone trauma. Through bibliometric analysis, this paper analyzed the research hotspots of artificial intelligence in the field of bone trauma in recent years, and predicted the future research trend.
OBJECTIVE: To summarize the development history, research status, hot spots, and future development trends of artificial intelligence technology in the field of bone trauma to provide new insights for future research. 
METHODS: This study selected relevant literature from the Web of Science core database, covering the period from the inception to August 2023, and retrieved 420 articles related to the application of artificial intelligence, machine learning, and deep learning in the field of bone trauma. After manual screening, 202 articles related to this article were exported, and Citespace software was used for visual analysis of cooperation of countries, institutions, cited journals, citation analysis, keyword co-occurrence, and other aspects.
RESULTS AND CONCLUSION: (1) The overall number of publications from the 202 selected articles showed an upward trend, indicating significant research potential for future studies. The country with the highest centrality and the highest publication volume was the United States. The University of California (USA) was the most prolific research institution. (2) The top five most commonly used keywords in bone trauma research using artificial intelligence were deep learning, artificial intelligence, bone density, machine learning, and diagnosis. The keyword with the highest centrality was bone density, and the keyword with the highest frequency was deep learning. (3) The top 10 most cited reference papers provided comprehensive insights into the feasibility of applying artificial intelligence techniques to the diagnosis of bone trauma from various perspectives. Among them, eight papers focused on bone and joint injuries and deep convolutional neural networks. One paper discussed the use of deep learning in detecting osteoporosis in CT scans to prevent fragility fractures, while another paper explored the correlation between the application of artificial intelligence in identifying changes in skin texture and the recognition of bone characteristics. (4) In the future, the research hotspots of artificial intelligence will mainly focus on the specific study of fractures caused by bone and joint trauma and osteoporosis. The research trend mainly focuses on improving the performance of artificial intelligence algorithms, using new artificial intelligence technologies to accurately classify and quickly and efficiently diagnose bone injuries, especially for the diagnosis of complex and hidden fractures. By establishing finite element analysis models, more standardized evaluations of bone injuries can be achieved. 

Key words: artificial intelligence, bone trauma, fractures, machine learning, deep learning, bibliometrics, Web of Science, imaging diagnosis, Citespace, visualization analysis

中图分类号: