中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (1): 202-210.doi: 10.12307/2025.001
• 干细胞综述 stem cell review • 上一篇 下一篇
程玮璐1,王泽华1,张译丹2,刘英慧1
收稿日期:
2023-10-30
接受日期:
2023-12-18
出版日期:
2025-01-08
发布日期:
2024-05-20
作者简介:
程玮璐,女,1987 年生,吉林省吉林市人,汉族,工学博士,医用材料器械高级工程师,主要从事医疗器械临床评价技术审评工作。
Cheng Weilu1, Wang Zehua1, Zhang Yidan2, Liu Yinghui1
Received:
2023-10-30
Accepted:
2023-12-18
Online:
2025-01-08
Published:
2024-05-20
About author:
Cheng Weilu, PhD, Senior engineer, Department of Clinical and Biostatistics, Center for Medical Device Evaluation, NMPA, Beijing 100081, China
摘要:
文题释义:
类器官:是由干细胞经体外3D培养产生的“类似”器官样、具有自我更新和组装能力以及结构和功能与来源组织或器官高度相似的微型器官,类似于组织器官。
疾病模型:是通过对疾病的生理、病理机制进行系统性建模,模拟疾病的发生发展和治疗效果变化的模型。
背景:3D类器官具有类似于生理组织并在一定程度上模仿器官功能的特点,使其成为从基础发育/干细胞研究到个性化医疗等应用的出色模型。
目的:综述并讨论类器官可应用的疾病类型和肿瘤建模等应用领域,以及其监管现状和挑战。
方法:以“类器官,干细胞,疾病模型,3D打印技术,医疗领域”为中文检索词,以“organoid,stem cell,disease model,3D printing technology,medical field”为英文检索词,检索PubMed、Elsevier、万方、中国知网等数据库,对国内外类器官产品进行汇总分析,总结出类器官技术在医疗领域中的应用情况,并对类器官产品在医疗领域的未来发展进行展望。
结果与结论:类器官组织可以打破传统细胞和动物模型的局限性,规避临床研究中存在的伦理问题,与源器官具有高度相似性,与人类系统的生理和病理具有更加相似的表现且遗传稳定,在当前研究中具有极大的优势。类器官在以下领域已得到应用:药效评价研究(临床前模型),包括肠道类器官、肾脏类器官、肝脏类器官、胆囊类器官、肺类器官、脑类器官、心脏类器官、皮肤类器官、生殖系统类器官等;传染病研究;肿瘤研究及精准治疗;再生医学;免疫类器官。美国、欧盟和中国虽暂无完善的监管规定,但均在努力推进类器官监管法律法规的制定。在国内,类器官医疗器械产品虽暂无已上市产品,但与其相关的再生医学产品已有突破性进展。
https://orcid.org/0009-0006-0386-5167 (程玮璐)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
程玮璐, 王泽华, 张译丹, 刘英慧. 类器官技术在医疗领域的应用和监管挑战[J]. 中国组织工程研究, 2025, 29(1): 202-210.
Cheng Weilu, Wang Zehua, Zhang Yidan, Liu Yinghui. Application and regulatory challenges of organoid technology in medical field[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(1): 202-210.
[1] 刘薇,梅玺丽,陈雨萌,等.3D类器官模型的研究进展及其在化学品毒理学评价中的应用展望[J].生态毒理学报,2021,16(4):32-42. [2] 赵冰.类器官在器官移植领域的应用前景[J].器官移植,2022,13(2): 169-175. [3] KRETZSCHMAR K, CLEVERS H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38(6):590-600. [4] 周永杰,石毓君.类器官研究进展及展望[J].中国普外基础与临床杂志, 2022,29(6):716-718. [5] HAN LH, TONG X, YANG F. Photo-crosslinkable PEG-based microribbons for forming 3D macroporous scaffolds with decoupled niche properties. Adv Mater. 2014;26:1757-1762. [6] CHRISNANDY A, BLONDEL D, REZAKHANI S, et al. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. Nat Mater. 2022;21(4):479-487. [7] GJOREVSKI N, NIKOLAEV M, BROWN TE, et al. Tissue geometry drives deterministic organoid patterning. Science. 2022;375(6576):eaaw9021. [8] CAI H, AO Z, WU Z, et al. Intelligent acoustofluidics enabled mini-bioreactors for human brain organoids. Lab Chip. 2021;21(11):2194-2205. [9] LICATA JP, SCHWAB KH, HAR-EL YE, et al. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci. 2023;24(14):11427. [10] SALMON I, GREBENYUK S, FATTAH ARA, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022;22(8): 1615-1629. [11] WRIGHT CW, LI N, SHAFFER L, et al. Establishment of a 96-well transwell system using primary human gut organoids to capture multiple quantitative pathway readouts. Sci Rep. 2023;13:16357. [12] PECK BC, MAH AT, PITMAN WA, et al. Functional transcriptomics in diverse intestinal epithelial cell types reveals robust microR-NA sensitivity in intestinal stem cells to microbial status. J Biol Chem. 2017;292(7):2586-2600. [13] EVANS GS, FLINT N, SOMERS AS, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci. 1992;101(Pt1):219-231. [14] 邱广志,喻礼怀,张昌卫,等.肠道类器官模型的构建和应用研究进展[J].动物营养学报,2023,35(7):4231-4237. [15] DERRICOTT H, LUU L, FONG WY, et al. Developing a 3D intestinal epithelium model for livestock species. Cell Tissue Res. 2019;375(2):409-424. [16] SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244): 262-265. [17] 林琳.GⅡ.4型人诺如病毒在人肠道类组织中的增殖及转录组研究[D].北京:中国疾病预防控制中心,2019. [18] LI Z, ARAOKA T, WU J, et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell. 2016;19(4): 516-529. [19] TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459): 481-484. [20] SHINOZAWA T, KIMURA M, CAI YQ, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem in organoids. Nat Methods. 2017;14(11):1097-1106. [21] 陈智闻,陈费,刘畅,等.人胆囊类器官培养体系的建立与鉴定[J].海军军医大学学报,2023,44(4):402-408. [22] CARPINO G, CARDINALE V, RENZI A, et al. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangiti. J Hepatol. 2015; 63:1220-1228. [23] 袁波.胆囊良恶性肿瘤类器官培养体系的建立及鉴定[D].上海:中国人民解放军海军军医大学,海军军医大学,2019. [24] SHIOTA J, SAMUELSON LC, RAZUMILAVA N. Hepatobiliary Organoids and Their Applications for Studies of Liver Health and Disease: Are We There Yet? Hepatology. 2021;74(4):2251-2263. [25] RISS T, KUPCHO K, SHULTZ J, et al. Measuring apoptosis in real-time by linking luciferase fragments to annexin V. Toxicol Lett. 2016;258:S56. [26] 邵云香,黄煜伦.大脑类器官在胶质母细胞瘤中的应用进展[J].国际神经病学神经外科学杂志,2020,47(4):453-458. [27] HUBERT CG, RIVERA M, SPANGLER LC, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell Heterogeneity of Tumors Found In Vivo. Cancer Res. 2016;76(8):2465-2477. [28] EIRAKU M, WATANABE K, MATSUO-TAKASAKI M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[. Cell Stem Cell. 2008;3(5):519-532. [29] KIRWAN P, TURNER-BRIDGER B, PETER M, et al. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro. Development. 2015;142(18):3178-3187. [30] 卢国庆,孙正宇,康品方,等.心脏类器官的生物构建策略及应用进展[J].齐齐哈尔医学院学报,2023,44(7):664-670. [31] TUVESON D, CLEVERS H. Cancer modeling meets human organoid technology. Science. 2019;364(6444):952-955. [32] ASHOK A, CHOUDHURY D, FANG Y, et al. Towards manufacturing of human organoids. Biotechnol Adv. 2020;39:107460. [33] SHANKARAN A, PRASAD K, CHAUDHARI S, et al. Advances in development and application of human organoids. Biotech. 2021;11(6):257. [34] HOFER M, LUTOLF MP. Engineering organoids. Nat Rev Mater. 2021;6(5): 402-420. [35] TAKEDA M, MIYAGAWA S, FUKUSHIMA S, et al. Development of in vitro drug-induced cardiotoxicity assay by using three-dimensional cardiac tissues derived from human induced pluripotent stem cells. Tissue Eng Part C Methods. 2018;24:56-67. [36] 刘昕彦,邵瑞,贺爽,等.类器官和立体细胞模型在中药心脏毒性评价中的应用前景[J].药学学报,2019,54(11):1888-1894. [37] 王美佳.皮肤类器官的构建及大面积皮肤损伤的修复研究[D].长春:长春理工大学,2022. [38] ZINK D, CHUAH JKC, YING JY. Assessing toxicity with human cell-based invitro methods. Trends Mol Med. 2020;26(6):570-582. [39] LIU Y, LUO HL, WANG XW, et al. In vitro construction of scaffold-free bilayered tissue-engineered skin containing capillary networks. BioMed Res. Int. 2013;2013:561410. [40] 张艳云,李润芝,姜珊,等.三维表皮模型Epikutis®参考品的研制[J].药物分析杂志,2019,39(12):2117-2125. [41] ALÉPÉE N, GRANDIDIER MH, COTOVIO J, et al. Sub-categorisation of skin corrosive chemicals by the EpiSkinTM reconstructed human epidermis skin corrosion test method according to UN GHS: Revision of OECD Test Guideline 431. Toxicol In Vitro. 2014;28(2):131-145. [42] 刘洋,卢涛,周宙霖,等.HaCaT表皮模型作为皮肤刺激性体外替代实验的可行性研究[J].干细胞与组织工程,2017,31(10):1262-1266. [43] 张劲松,何立成,桑晶,等.EpiskinTM和Epikutis®模型在体外皮肤刺激性和腐蚀性检测应用中的比较[J].中国现代应用药学,2017,34(4): 524-526. [44] 姜珊,陈亮,吴美玉,等.金核/银壳纳米棒在三维表皮模型中的透皮行为和对组织活力的影响[J]. 药物分析杂志,2019,39(3):377-385. [45] 郭正昌,周波.类器官的研究现状及其作为临床前模型的应用[J].安徽医科大学学报,2022,57(3):500-503. [46] BAERT Y, DE KOCK J, ALVES-LOPES JP, et al. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Rep. 2017; 8(1):30-38. [47] TURCO MY, GARDNER L, HUGHES J, et al. Long-term,hormone-re-sponsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19(5):568-577. [48] DE OLIVEIRA LF, MENDES FILHO D, MARQUES BL, et al. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev. Biol. 2023;144:87-96. [49] BLUTT SE, ESTES MK. Organoid models for infectious disease. Annu Rev Med. 2022;73:167-182. [50] YIN Y, BIJVELDS M, DANG W, et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res. 2015;123:120-131. [51] JANOWSKI AB, BAUER IK, HOLTZ LR, et al. Propagation of astrovirus VA1, a neurotropic human astrovirus, in cell culture. J Virol. 2017;91(19):e00740-17. [52] ETTAYEBI K, CRAWFORD SE, MURAKAMI K, et al. Replication of human noroviruses in stem cell–derived human enteroids. Science. 2016;353(6306): 1387-1393. [53] VU DL, BOSCH A, PINTÓ RM, et al. Human astrovirus MLB replication in vitro: persistence in extraintestinal cell lines. J Virol. 2019;93(13):10-1128. [54] KOLAWOLE AO, MIRABELLI C, HILL DR, et al. Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathog. 2019;15(10):e1008057. [55] ZHAO B, NI C, GAO R, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell. 2020;11(10):771-775. [56] LESAVAGE BL, SUHAR RA, BROGUIERE N, et al. Next-generation cancer organoids. Nat Mater, 2022;21(2):143-159. [57] DROST J, CLEVERS H. Organoids in cancer research. Nat Rev Cancer. 2018; 18(7):407-418. [58] ABOULKHEYR ES H, MONTAZERI L, AREF AR, et al. Personalized cancer medicine: an organoid approach. Trends Biotechnol. 2018;36(4):358-371. [59] BERTHIAUME F, MAGUIRE TJ, YARMUSH ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403-430. [60] SUGIMOTO S, KOBAYASHI E, FUJII M, et al. An organoid-based organ repurposing approach to treat short bowel syndrome. Nature. 2021; 592(7852):99-104. [61] SAMPAZIOTIS F, MURARO D, TYSOE OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science. 2021; 371(6531):839-846. [62] CUBO N, GARCIA M, DEL CANIZO JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006. [63] VIJAYAVENKATARAMAN S, LU WF, FUH JY. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication. 2016;8(3):032001. [64] JANG J, PARK HJ, KIM SW, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264-274. [65] ZHANG YS, ARNERI A, BERSINI S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. [66] CHOI WH, BAE DH, YOO J. Current status and prospects of organoid-based regenerative medicine. BMB Rep. 2023;56(1):10-14. [67] LI J, HE L, ZHOU C, et al. 3D printing for regenerative medicine: From bench to bedside. MRS Bull. 2015;40(2):145-154. [68] TARAFDER S, BALLA VK, DAVIES NM, et al. Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regener Med. 2013;7(8):631-641. [69] TARAFDER S, DAVIES NM, BANDYOPADHYAY A, et al. 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci. 2013;1(12):1250-1259. [70] LEE CH, MARION NW, HOLLISTER S, et al. Tissue Formation and Vascularization in Anatomically Shaped Human Joint Condyle Ectopically in Vivo. Tissue Eng Part A. 2009;15(12):3923-3930. [71] LEE CH, COOK JL, MENDELSON A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376(9739):440-448. [72] 郭贝贝,胡慧丽.类器官在发育与再生中的研究进展[J].中国细胞生物学学报,2021,43(6):1111-1119. [73] 李潇萌,管若羽,高建军,等.类器官在再生医学中的应用[J].中国细胞生物学学报,2021,43(6):1120-1131. [74] BOUFFI C, WIKENHEISER-BROKAMP KA, CHATURVEDI P, et al. In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice. Nat Biotechnol. 2023;41(6):824-831. [75] VOTANOPOULOS KI, FORSYTHE S, SIVAKUMAR H, et al. Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study. Ann Surg Oncol. 2020;27:1956-1967. [76] FDA.Drug development tool (DDT)qualification programs. 2023-04-06[2023-07-03]. https: //www.Fda.gov/drugs/development-approval-process-drugs/drug-development-tool-ddt-qualification-programs. [77] FDA. FDA’s predictive toxicology roadmap. 2017-12-30 [2023-07-03]. https://www. Fda. Gov/science-research/About-science-research-fda/fdas-predictive-toxicology-Roadmap. [78] 傅丽霞,张秀莉,庞晓丛,等.类器官和器官芯片在新药评价中的应用及国内外监管现状分析[J].中国临床药理学杂志,2023,39(18):2724-2730. [79] UNION E. Directive 2010/63 /EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes Text with EEA relevance. 2019-06-26[2023-07-03]. https://eur-lex.Europa.eu/eli/dir/2010/63/oj. [80] EMA. Reflection paper on the qualification of non - genotoxic impurities. 2018 -11- 15[2023 -07-03].https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-qualification-non-genotoxic-impurities_en.pdf. [81] EMA. Consolidated 3 - year work plan for the Non - clinical domainincluding the priorities for 2023.2023-01-26[2023-07-03]. https://www.ema. europa.eu/en/documents/otherlconsolidated-3-year-work-plan-non-clinical-do-main-including-priorities-2023_en. pdf. [82] 罗会宇,马永慧.人源类器官的应用前景,伦理风险与治理建议[J].科技导报,2022,40(8): 6-13. [83] 高建超.关于我国细胞治疗产业发展现况和监管思路的浅见(上)[J].中国医药生物技术,2019,14(3):193-198. [84] 高建超.关于我国细胞治疗产业发展现况和监管思路的浅见(下)[J]. 中国医药生物技术,2022,14(4):289-293. [85] 刘家伟,冯佳佳,孔维华,等.我国生物医药领域中生物医学新技术发展及管理现状的思考[J].医学新知,2023,33(2):136-142. [86] 郑颖,邓诗碧,陈方.干细胞与再生医学技术发展态势研究[J].中国生物工程杂志,2022,42(4):111-119. [87] 乐晶晶.类器官应用的伦理问题及治理对策研究[D].厦门:厦门大学, 2020. [88] 杨练,冯海洋,许苑晶.3D打印医疗应用及中心建设现状[J].中国组织工程研究,2023,27(13):2110-2115. |
[1] | 余 帅, 刘家伟, 朱 彬, 潘 檀, 李兴龙, 孙广峰, 于海洋, 丁 亚, 王宏亮. 小分子药物治疗骨关节炎的热点问题及应用前景[J]. 中国组织工程研究, 2025, 29(9): 1913-1922. |
[2] | 于经邦, 吴亚云. 非编码RNA在肺纤维化过程中的调控作用[J]. 中国组织工程研究, 2025, 29(8): 1659-1666. |
[3] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[4] | 袁维勃, 刘 婵, 余丽梅. 肝脏类器官在肝脏疾病模型与移植治疗中的应用潜力[J]. 中国组织工程研究, 2025, 29(8): 1684-1692. |
[5] | 喻 婷, 吕冬梅, 邓 浩, 孙 涛, 程 钎. 淫羊藿苷预处理增强人牙周膜干细胞对M1型巨噬细胞的影响[J]. 中国组织工程研究, 2025, 29(7): 1328-1335. |
[6] | 杨治航, 孙祖延, 黄文良, 万 喻, 陈仕达, 邓 江. 神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J]. 中国组织工程研究, 2025, 29(7): 1336-1342. |
[7] | 胡涛涛, 刘 兵, 陈 诚, 殷宗银, 阚道洪, 倪 杰, 叶凌霄, 郑祥兵, 严 敏, 邹 勇. 过表达神经调节蛋白1的人羊膜间充质干细胞促进小鼠皮肤创面愈合[J]. 中国组织工程研究, 2025, 29(7): 1343-1349. |
[8] | 金 凯, 唐 婷, 李美乐, 谢裕安. 人脐带间充质干细胞条件培养基及外泌体对肝癌细胞增殖、迁移、侵袭和凋亡的影响[J]. 中国组织工程研究, 2025, 29(7): 1350-1355. |
[9] | 李帝均, 酒精卫, 刘海峰, 闫 磊, 李松岩, 王 斌. 明胶三维微球装载人脐带间充质干细胞修复慢性肌腱病[J]. 中国组织工程研究, 2025, 29(7): 1356-1362. |
[10] | 娄 国, 张 敏, 付常喜. 8周运动预适应增强脂肪干细胞治疗心肌梗死大鼠的效果[J]. 中国组织工程研究, 2025, 29(7): 1363-1370. |
[11] | 刘 琪, 李林臻, 李玉生, 焦泓焯, 杨 程, 张君涛. 淫羊藿苷含药血清促进3种细胞共培养体系中软骨细胞增殖和干细胞成软骨分化[J]. 中国组织工程研究, 2025, 29(7): 1371-1379. |
[12] | 艾克帕尔·艾尔肯, 陈晓涛, 吾凡别克·巴合提. 成骨诱导人牙周膜干细胞来源外泌体促进炎症微环境下人牙周膜干细胞成骨分化[J]. 中国组织工程研究, 2025, 29(7): 1388-1394. |
[13] | 章镇宇, 梁秋健, 杨 军, 韦相宇, 蒋 捷, 黄林科, 谭 桢. 新橙皮苷治疗骨质疏松症的靶点及对骨髓间充质干细胞成骨分化的作用[J]. 中国组织工程研究, 2025, 29(7): 1437-1447. |
[14] | 谢刘刚, 崔书克, 郭楠楠, 李遨宇, 张菁瑞. 干细胞治疗阿尔茨海默病的研究热点与前沿[J]. 中国组织工程研究, 2025, 29(7): 1475-1485. |
[15] | 彭洪成, 彭国璇, 雷安毅, 林 圆, 孙 红, 宁 旭, 尚显文, 邓 进, 黄明智. 血小板衍生生长因子BB参与生长板损伤修复的作用与机制[J]. 中国组织工程研究, 2025, 29(7): 1497-1503. |
1.1.8 检索文献量 初检文献4 946篇。
1.2 入选标准1.3 数据提取和质量评估 检索获得4 946篇文章,其中英文文献4 493篇、中文文献453篇,排除重复文献及与文章相关性低的文献,结合手工检索及远期经典文献,最终纳入88篇文献进行综述分析,包括中文文献26篇、英文文献62篇,见图2。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
类器官:是由干细胞经体外3D培养产生的“类似”器官样、具有自我更新和组装能力以及结构和功能与来源组织或器官高度相似的微型器官,类似于组织器官。
疾病模型:是通过对疾病的生理、病理机制进行系统性建模,模拟疾病的发生发展和治疗效果变化的模型。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
3D类器官具有类似于生理组织并在一定程度上模仿器官功能的特点,使其成为从基础发育/干细胞研究到个性化医疗等应用的出色模型。尽管该领域研究近年来迅速扩大,但许多类器官的可能性仍然只是在原理验证水平上显示,尚未得到广泛应用。类器官在以下领域已得到应用:药效评价研究(临床前模型),包括肠道类器官、肾脏类器官、肝脏类器官、胆囊类器官、肺类器官、脑类器官、心脏类器官、皮肤类器官、生殖系统类器官等;传染病研究;肿瘤研究及精准治疗;再生医学;免疫类器官。全球范围内目前均无完善的法规体系,但各国监管机构均在进行相关研究。在国内,类器官医疗器械产品虽暂无已上市产品,但与其相关的再生医学产品已有突破性进展。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||