[1]Abzan N, Kharaziha M, Labbaf S. Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Materials & Design.2019;167:107636.[2]Kenar H, Ozdogan CY, Dumlu C, et al. Microfibrous scaffolds from poly(l-lactide-co-ε-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Materials Science and Engineering:C.2019;97:31-44.[3]Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;97: 67-77.[4]王春仁,白东亭.中国组织工程与再生医学的最新研究进展[J].药物分析杂志,2010,30(7):1370-1372.[5]曹谊林,崔磊,刘伟.中国组织工程研究回顾与发展[J].医学研究通讯,2005,3(2):5-6.[6]罗远,黄远亮.脂肪干细胞生物学特性及在口腔再生医学中的应用[J].中国组织工程研究,2017,21(5):795-801.[7]李大为,何进,何凤利,等.丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J].中国生物工程杂志,2017,37(10): 111-117.[8]Przekora A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater Sci Eng C Mater Biol Appl.2019;97:1036-1051.[9]Zhu H, Kimura T, Swami S, et al. Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials.2019;196:31-45.[10]张婷,欧阳昭连.基于专利分析及可视化的抗肿瘤药竞争态势研究[J].中国新药杂志,2018,27(20):2337-2345.[11]Zhang T, Chen J, Jia X. Identification of the Key Fields and Their Key Technical Points of Oncology by Patent Analysis. PLoS One.2015;10(11):e0143573.[12]Chen DZ, Chang HW, Huang MH, et al. Core technologies and key industries in Taiwan from 1978 to 2002: A perspective from patent analysis. Scientometrics.2005; 64(1):31-53.[13]Qu J, Lu J, Hu Y. Research and development of anti-Parkinson's drugs: an analysis from the perspective of technology flows measured by patent citations. Expert Opin Ther Pat.2019;29(2):127-135.[14]Jeong Y, Yoon B. Development of patent roadmap based on technology roadmap by analyzing patterns of patent development. Technovation.2015;39-40:37-52.[15]赵晓宇.药物研发相关的专利策略研究[D].北京:中国人民解放军军事医学科学院,2007.[16]张婷,晏仁义,崔胜男,等.药学科研领域几种常用仪器的专利计量分析[J].中国药业,2014,23(2):12-15.[17]张婷,贾晓峰.基于专利计量分析的抗HIV药物发展趋势研究[J].现代生物医学进展,2015,15(8):1540-1546.[18]张婷,贾晓峰.基于专利分析的天然抗肿瘤药制剂技术发展态势研究[J].现代生物医学进展,2016,16(8):1546-1550.[19]池慧.中国医疗器械创新力发展报告[M].北京:科学出版社, 2018.[20]张婷,欧阳昭连.中国肿瘤领域重点技术的识别研究[J].中国肿瘤,2018,27(5):393-400.[21]张婷.基于专利分析和社会网络分析的天然抗肿瘤药研究[J].中国肿瘤,2017,26(8):642-649.[22]何凤利,何进,尹大川.静电纺丝制备组织工程支架的研究进展[J].材料导报,2014,28(23):1-7.[23]曹雪飞,宋朋杰,乔永杰,等. 3D打印骨组织工程支架的研究与应用[J]中国组织工程研究,2015,19(25):4076-4080.[24]Wang Y, Wang X, Shi J, et al. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Sci Rep.2016;6:39477.[25]Rogozhnikov D, O'Brien PJ, Elahipanah S, et al. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering. Sci Rep.2016;6: 39806.[26]张志强,黄向华,赵林远.微环境对细胞的影响以及仿生学在组织工程支架中的应用[J].中国生物工程杂志,2014,34(4): 101-109.[27]陈希亮,陈庆华,庄颖,等.KGM/明胶/nano HAP椎间盘纤维环组织工程支架的制备与研究[J].无机材料学报,2018,33(1): 60-66.[28]李正茂.生物活性玻璃组织工程支架的制备及细胞相容性研究[D].广州:华南理工大学,2013.[29]Hatamzadeh M, Najafi-Moghadam P, Baradar-Khoshfetrat A, et al. Novel nanofibrous electrically conductive scaffolds based on poly(ethylene glycol)s-modified polythiophene and poly(epsilon-caprolactone) for tissue engineering applications. Polymer.2016;107(19):177-190.[30]蒋涛.大鼠脱细胞脊髓支架的优化改性及相关特性研究[D].重庆:第三军医大学,2013.[31]卫兰.基于功能性聚肽共聚物及高分子水凝胶的载药体系及组织工程支架的制备和研究[D].上海:华东理工大学,2011. |