[1] RODDY E, DEBAUN MR, DAOUD-GRAY A, et al. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018;28(3):351-362.
[2] 倪建光,刘丹平.骨组织工程支架材料的研究进展[J].中国组织工程研究与临床康复,2009,13(8):1525-1528.
[3] 谭嘉,陈国平,郝永强.生物3D打印的关键技术及骨科应用进展[J].中华骨科杂志,2020,40(2):110-118.
[4] ZHOU M, YIN Y, ZHAO J, et al. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci. 2023;11(23): 7512-7530.
[5] HUANG H, LIN Y, JIANG Y, et al. Recombinant protein drugs-based intra articular drug delivery systems for osteoarthritis therapy. Eur J Pharm Biopharm. 2023;183:33-46.
[6] 叶鹏,田仁元,黄文良,等.丝素/壳聚糖/纳米羟基磷灰石构建的骨组织工程支架[J].中国组织工程研究,2013,17(29):5269-5274.
[7] 肖红利,黄文良,能坤,等.丝素蛋白壳聚糖和纳米羟基磷灰石制备骨软骨梯度孔径支架初探[J].中华老年医学杂志,2018,37(7): 816-820.
[8] RUAN SQ, DENG J, YAN L, et al. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model. Biomed Pharmacother. 2018;97:600-606.
[9] ZHANG J, MAO Y, RAO J. The SPI1/SMAD5 cascade in the promoting effect of icariin on osteogenic differentiation of MC3T3-E1 cells: a mechanism study. J Orthop Surg Res. 2024;19(1):444.
[10] CHEN M, CUI Y, LI H, et al. Icariin Promotes the Osteogenic Action of BMP2 by Activating the cAMP Signaling Pathway. Molecules. 2019; 24(21):3875.
[11] ZU Y, MU Y, LI Q, et al. Icariin alleviates osteoarthritis by inhibiting NLRP3-mediated pyroptosis. J Orthop Surg Res. 2019;14(1):307.
[12] 程琳燕,金晓丽,陈煊威,等.淫羊藿苷通过RANKL-p38/ERK-NFAT通路抑制硫代乙酰胺诱导的破骨分化[J].中国中药杂志,2022, 47(21):5882-5889.
[13] 梅杰,何强,孙欣,等.淫羊藿苷促进成骨细胞增殖分化的非核效应信号通路[J].中国组织工程研究,2023,27(20):3129-3135.
[14] 李时斌,夏天,章晓云,等.淫羊藿活性单体成分调控骨质疏松症相关信号通路影响骨吸收与骨形成的稳态[J].中国组织工程研究, 2022,26(11):1772-1779.
[15] 辛红美,许洁,汪长东.淫羊藿苷促进MC3T3-E1成骨分化通过Hedgehog信号通路[J].中国药理学通报,2020,36(5):616-620.
[16] XIE Y, SUN W, YAN F, et al. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Int J Nanomedicine. 2019;14: 6019-6033.
[17] ZHANG X, LIN X, LIU T, et al. Osteogenic Enhancement Between Icariin and Bone Morphogenetic Protein 2: A Potential Osteogenic Compound for Bone Tissue Engineering. Front Pharmacol. 2019;10:201.
[18] MOHAMMADZADEH M, ZAREI M, ABBASI H, et al. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng. 2024;18(1):29.
[19] LIU N, HUANG S, GUO F, et al. Calcium phosphate cement with icariin-loaded gelatin microspheres as a local drug delivery system for bone regeneration. Biomed Eng Online. 2022;21(1):89.
[20] ZOU L, HU L, PAN P, et al. Icariin-releasing 3D printed scaffold for bone regeneration. Compos B Eng. 2022;232:109625.
[21] 杨治航,孙祖延,黄文良,等.神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J].中国组织工程研究,2025,29(7): 1336-1342.
[22] 李飞非,王布雨,杨治航,等.生长分化因子5诱导兔骨髓间充质干细胞的软骨分化[J].中国组织工程研究,2024,28(13):1976-1982.
[23] XIAO H, HUANG W, XIONG K, et al. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomedicine. 2019;14:2011-2027.
[24] TIN TIN HTAR M, MADHAVA H, BALMER P, et al. A review of the impact of pneumococcal polysaccharide conjugate vaccine (7-valent) on pneumococcal meningitis. Adv Ther. 2013;30(8):748-762.
[25] KRAUS KH, KIRKER‐HEAD C. Mesenchymal stem cells and bone regeneration. Vet Surg. 2006;35(3):232-242.
[26] WEN Z, ZHENG S, ZHOU C, et al. Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J Cell Mol Med. 2011;15(5):1032-1043.
[27] WADA N, GRONTHOS S, BARTOLD PM. Immunomodulatory effects of stem cells. Periodontol 2000. 2013;63(1):198-216.
[28] ABO-ZAID AE, EL RAZZAK MYA, SARHAN NI, et al. Evaluation of bone regeneration using human derived-gingival mesenchymal stem cells loaded on beta tricalcium phosphate and hyaluronic acid: An experimental study. Tanta Dent J. 2024;21(1):60-65.
[29] SEONG JM, KIM BC, PARK JH, et al. Stem cells in bone tissue engineering. Biomed Mater. 2010;5(6):062001.
[30] AISAITI A, AIERXIDING S, SHOUKEER K, et al. Mesenchymal stem cells for peripheral nerve injury and regeneration: a bibliometric and visualization study. Front Neurol. 2024;15:1420402.
[31] LI M, YU B, WANG S, et al. Microenvironment-responsive nanocarriers for targeted bone disease therapy. Nano Today. 2023;50:101838.
[32] LI X, SHU X, SHI Y, et al. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. Chin Chem Lett. 2023;34(7): 107986.
[33] 张志荣,董尔丹,吴镭,等.生物大分子药物递送系统研究现状与前沿方向[J].中国基础科学,2014,16(5):3-8.
[34] 李秀英,曾凡,赵曜,等.脂质体药物递送系统的研究进展[J].中国新药杂志,2014,23(16):1904-1911,1917.
[35] CHEN X, DONG J, MA S, et al. Targeting agents used in specific bone-targeting drug delivery systems: A review. Sci Adv Mater. 2022;14(4): 613-621.
[36] 张铭笑,孙春萌.骨靶向药物递送系统研究进展[J].药学进展, 2023,47(8):637-644.
[37] 吴梅剑宗,秦佳佳,刘海全.不同浓度淫羊藿苷对大鼠脂肪干细胞成骨分化相关因子的体外研究[J].北京中医药大学学报,2022, 45(12):1249-1256.
[38] 吴迪,米甜,王贺东,等.淫羊藿素的药理作用及分子机制研究进展[J].医学研究与教育,2023,40(6):1-11.
[39] 姜涛,凌翠敏,陈庆真,等.淫羊藿苷通过提高自噬促进成骨细胞分化防治骨质疏松[J].中国组织工程研究,2021,25(17):2643-2649.
[40] MA HP, MA XN, GE BF, et al. Icariin attenuates hypoxia-induced oxidative stress and apoptosis in osteoblasts and preserves their osteogenic differentiation potential in vitro. Cell Prolif. 2014;47(6): 527-539.
[41] 四川大学.一种具有缓释和促进成骨功能的3D打印骨组织工程支架及其制备方法与应用: CN202010801668.1[P].2021-11-30.
[42] 何思良.水凝胶/微球/淫羊藿苷复合载药体系的制备及性能研究[D].湘潭: 湖南科技大学,2016.
[43] 薛鹏,杜斌,王礼宁,等.可控释淫羊藿苷-β-磷酸三钙复合支架的制备[J].中国组织工程研究,2018,22(6):865-870.
[44] 张孟伟.淫羊藿苷/多孔镁合金新型支架通过Wnt/β-catenin信号通路修复大鼠膝关节软骨缺损的实验研究[D].汕头:汕头大学, 2022.
[45] 刘琪,李林臻,张君涛.淫羊藿苷促进关节软骨损伤修复作用机制研究进展[J].药物评价研究,2024,47(6):1393-1399.
|