中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (14): 3524-3535.doi: 10.12307/2026.654

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

不同骨质条件上颌窦提升种植修复后施耐德膜应力分布的有限元分析

杜  雪1,2,罗思阳2,冯红超2,刘建国1,罗  祎2,孙江龄2,常兴桃1,2,李玉婷1,2,王睿婕1,2   

  1. 1遵义医科大学,贵州省遵义市  563000;2贵阳市口腔医院,贵州省贵阳市  550002
  • 收稿日期:2025-04-24 接受日期:2025-07-05 出版日期:2026-05-18 发布日期:2025-09-10
  • 通讯作者: 罗思阳,副主任医师,博士,贵阳市口腔医院,贵州省贵阳市 550002
  • 作者简介:杜雪,女,1998年生,四川省南充市人,汉族,遵义医科大学硕士在读,主要从事口腔修复学的研究。
  • 基金资助:
    贵州省卫生计生委科学技术基金项目(gzwjkj2018-1-057),项目负责人:罗思阳;贵阳市口腔医院高层次人才计划项目(2024BS03),项目负责人:罗思阳

Finite element analysis of stress distribution of Schneiderian membrane after maxillary sinus elevation and implantation under different bone quality conditions

Du Xue1, 2, Luo Siyang2, Feng Hongchao2, Liu Jianguo1, Luo Yi2, Sun Jiangling2, Chang Xingtao1, 2, Li Yuting1, 2, Wang Ruijie1, 2   

  1. 1Zunyi Medical University, Zunyi 563000, Guizhou Province, China; 2Guiyang Stomatological Hospital, Guiyang 550002, Guizhou Province, China
  • Received:2025-04-24 Accepted:2025-07-05 Online:2026-05-18 Published:2025-09-10
  • Contact: Luo Siyang, Associate chief physician, PhD, Guiyang Stomatological Hospital, Guiyang 550002, Guizhou Province, China
  • About author:Du Xue, Master candidate, Zunyi Medical University, Zunyi 563000, Guizhou Province, China; Guiyang Stomatological Hospital, Guiyang 550002, Guizhou Province, China
  • Supported by:
    Guizhou Provincial Health and Family Planning Commission Science and Technology Fund Project, No. gzwjkj2018-1-057 (to LSY); Guiyang Stomatological Hospital High-level Talent Program Project, No. 2024BS03 (to LSY)

摘要:

文题释义:
施耐德膜:又称上颌窦底黏膜,是上颌窦窦壁内衬一层黏膜。从组织学角度来看,施耐德膜是由上皮层、固有层及骨膜层所构成,作为上颌牙槽骨与上颌窦的分界线在上颌窦提升术中具有重要地位。
上颌窦提升术:通过手术方法将上颌窦底的黏膜抬高,在窦底和牙槽嵴顶之间植入或不植入骨移植材料,为种植体的植入创造空间。上颌窦底提升术依据临床路径可分为侧壁开窗上颌窦底提升术和穿牙槽嵴上颌窦底提升术。

背景:关于施耐德膜应力分析的研究众多,国内外对施耐德膜应力分析的研究主要集中在上颌窦提升手术过程中或体外施耐德膜的应力应变分析,而有关上颌窦提升种植修复后咬合时施耐德膜的应力应变研究较为少见。
目的:采用有限元分析探究上颌磨牙区不同剩余骨量、不同骨质条件行上颌窦提升种植修复后咬合时施耐德膜的应力分布情况及应力峰值、位移等。
方法:基于健康成年志愿者锥形束CT扫描文件,建立上颌窦提升模型和种植体及相关配件的模型,设置4种骨质属性(Ⅰ-Ⅳ类松质骨)、2种上颌第一磨牙区剩余骨量(剩余骨高度3 mm与5 mm)、3种形态种植体(大螺纹种植体、柱形种植体、锥形种植体)、3种上颌窦提升术后模型[上颌窦提升未植骨或提升后植骨但未成骨组(S组)、上颌窦提升植骨后种植体周围成骨但顶端未成骨组(T组)及上颌窦提升植骨后种植体周围及顶端成骨组(U组)],有限元分析静态载荷下各组模型中施耐德膜的应力分布、应力峰值以及位移状况。
结果与结论:①当骨质从Ⅰ类逐渐向Ⅳ类变化时,各组模型中施耐德膜的Von Mises应力峰值及位移峰值均呈逐渐上升趋势,在Ⅳ类骨时达最大值;当上颌第一磨牙区剩余骨量为3 mm、骨质为Ⅳ类、植入大螺纹植体时,S组模型中施耐德膜的Von Mises应力峰值最大
(0.558 MPa)、位移峰值最大(278 μm)。当骨质从Ⅰ类向Ⅳ类逐渐变化时,各组模型中施耐德膜的位移峰值呈逐渐上升趋势;在相同骨质条件下,植入柱形、锥形、大螺纹植体模型的施耐德膜位移峰值均表现为S组> T组> U组。②结果表明,当剩余骨量较少且骨密度较差时,应谨慎使用大螺纹种植体进行上颌窦提升手术,在上颌窦提升术前进行种植系统选择时应当将上颌窦黏膜的状态纳入术前考量范围,据此规划种植方案;剩余骨量的高度、密度及上颌窦内成骨情况决定了种植修复后咬合力传导至施耐德膜的应力峰值及位移峰值,行上颌窦提升种植手术时应当充分考量患者剩余骨量及骨密度,术中应尽可能剥离施耐德膜以增加成骨面积;柱形种植体与锥形种植体在上颌窦提升种植修复后对施耐德膜应力分布及位移形变的影响无显著影响;在剩余骨量小于3 mm行上颌窦提升种植修复时,使用骨移植材料能显著减小修复后咬合时的种植体动度及施耐德膜所受的应力;在上颌磨牙区剩余骨量大于5 mm的情况下,进行上颌窦提升种植修复无论种植体周围及顶端有无成骨,施耐德膜所受的应力峰值均远低于健康施耐德膜的平均穿孔张力。
https://orcid.org/0009-0000-8073-4079(杜雪)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 施耐德膜">, 有限元分析">, 骨密度">, 生物力学">, 上颌窦提升术">, 骨质条件

Abstract: BACKGROUND: There are many studies on the stress distribution of the Schneiderian membrane. However, domestic and international research on the stress analysis of the Schneiderian membrane mainly focuses on the stress-strain analysis during the maxillary sinus elevation surgery or of the isolated Schneiderian membrane, while the research on the stress-strain of the Schneiderian membrane during occlusion after maxillary sinus elevation and implant restoration is relatively rare.
OBJECTIVE: To investigate the stress distribution, stress peak, and displacement of the Schneiderian membrane during occlusion after maxillary sinus elevation and implant restoration with different remaining bone volumes in the maxillary molar area and under different bone quality conditions using finite element analysis. 
METHODS: Based on cone beam CT scan files of healthy adult volunteers, models of maxillary sinus lift and implants and related accessories were established. Four bone properties (class I-IV cancellous bone), two residual bone volumes in the maxillary first molar area (residual bone height 3 mm and 5 mm), three implant morphologies (large thread implant, cylindrical implant, and tapered implant) and three models after maxillary sinus lift [maxillary sinus lift without bone grafting or bone grafting but no bone formation after lift (S group), maxillary sinus lift with bone grafting around implant but no bone formation at the apex (T group), and maxillary sinus lift with bone grafting around implant and at the apex (U group)] were set. Finite element analysis was performed on the stress distribution, stress peak and displacement of Schneiderian membrane in each group of models under static load. 
RESULTS AND CONCLUSION: (1) When the bone quality gradually changed from Class I to Class IV, the Von Mises stress peak and displacement peak of Schneiderian membrane in each group of models showed a gradual upward trend, reaching the maximum value in Class IV bone. When the remaining bone volume in the maxillary first molar area was 3 mm, the bone quality was Class IV, and large threaded implants were implanted, the Von Mises stress peak of Schneiderian membrane in the S group model was the largest (0.558 MPa) and the displacement peak was the largest (278 μm). When the bone quality gradually changed from Class I to Class IV, the displacement peak of Schneiderian membrane in each group of models showed a gradual upward trend. Under the same bone quality conditions, the displacement peak of Schneiderian membrane in the models implanted with cylindrical, conical, and large threaded implants showed the order of S group > T group > U group. (2) The results show that when the remaining bone volume was small and the bone density was poor, large threaded implants should be used with caution for maxillary sinus lift surgery. When selecting the implant system before maxillary sinus lift surgery, the state of the maxillary sinus mucosa should be taken into consideration before surgery, and the implant plan should be planned accordingly. The height, density and bone formation of the remaining bone volume and the bone formation in the maxillary sinus determined the stress peak and displacement peak of the occlusal force transmitted to the Schneiderian membrane after implant restoration. The patient's remaining bone volume and bone density should be fully considered during maxillary sinus lift surgery. The Schneiderian membrane should be peeled off as much as possible during surgery to increase the bone formation area. The cylindrical implant and the conical implant had no significant effect on the stress distribution and displacement deformation of the Schneiderian membrane after maxillary sinus lift implant restoration. When the remaining bone volume was less than 3 mm for maxillary sinus lift implant restoration, the use of bone transplant materials could significantly reduce the implant mobility and the stress on the Schneiderian membrane during occlusion after restoration. When the remaining bone volume in the maxillary molar area was greater than 5 mm, the peak stress of Schneiderian membrane was much lower than the average perforation tension of healthy Schneiderian membrane, regardless of whether there was bone formation around the implant and at the top.

Key words: ">Schneiderian membrane">, finite element analysis">, bone density">, biomechanics">, maxillary sinus elevation surgery">, bone condition

中图分类号: