[1] KONG Y, DUAN J, LIU F, et al. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem Soc Rev. 2021;50(22): 12828-12872.
[2] GRONTHOS S, MANKANI M, BRAHIM J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625-13630.
[3] MIURA M, GRONTHOS S, ZHAO M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10): 5807-5812.
[4] GANDIA C, ARMINAN A, GARCIA-VERDUGO JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26(3):638-645.
[5] GOMES JA, GERALDES MB, MELO GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51(3):1408-1414.
[6] YAMAZA T, KENTARO A, CHEN C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):5.
[7] SAKAI K, YAMAMOTO A, MATSUBARA K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122(1):80-90.
[8] ARANY PR, CHO A, HUNT TD, et al. Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Sci Transl Med. 2014;6(238):238ra69.
[9] XUAN K, LI B, GUO H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455):eaaf3227.
[10] LI W, JIAO X, SONG J, et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function. Stem Cells Transl Med. 2021;10(7):956-967.
[11] ZHANG XM, OUYANG YJ, YU BQ, et al. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease. Neural Regen Res. 2021;16(5):893-898.
[12] HAN Y, KOOHI-MOGHADAM M, CHEN Q, et al. HIF-1alpha stabilization boosts pulp regeneration by modulating cell metabolism. J Dent Res. 2022;101(10):1214-1226.
[13] YU CY, BOYD NM, CRINGLE SJ, et al. Oxygen distribution and consumption in rat lower incisor pulp. Arch Oral Biol. 2002;47(7):529-536.
[14] KOYASU S, KOBAYASHI M, GOTO Y, et al. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 2018;109(3):560-571.
[15] 关丽娜,杨帆,尹东锋,等.低氧环境下Notch信号通路对人牙髓干细胞成牙本质向分化的影响[J].中华口腔医学研究杂志(电子版),2020,14(4):214-220.
[16] SHION O, NOBUYUKI K, KENTO T, et al. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Scientific Reports. 2022;12(1):682.
[17] SHI R, YANG H, LIN X, et al. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Res Ther. 2019; 10(1):89.
[18] BELLAH ANE, MASASHI M, SATORU K, et al. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs). Scientific reports. 2016;6(1):35476.
[19] YAN W, FANG H, XIN Z, et al. Hypoxic preconditioning enhances dental pulp stem cell therapy for infection-caused bone destruction. Tissue engineering. Part A. 2016;22(19-20):1191-1203.
[20] ANNA L, NATALIA B, ANDRZEJ K, et al. Multilineage differentiation potential of human dental pulp stem cells-impact of 3D and hypoxic environment on osteogenesis in vitro. Int J Mol Sci. 2020;21(17):6172.
[21] RYAN P, YESSENIA V, RAGHUVARAN N, et al. C5a complement receptor modulates odontogenic dental pulp stem cell differentiation under hypoxia. Connect Tissue Res. 2021;63(4):339-348.
[22] VINING KH, MOONEY DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728-742.
[23] CHAUDHURI O, COOPER-WHITE J, JANMEY PA, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020; 584(7822):535-546.
[24] CHENG B, WAN W, HUANG G, et al. Nanoscale integrin cluster dynamics controls cellular mechanosensing via FAKY397 phosphorylation. Sci Adv. 2020;6(10):x1909.
[25] XIE C, TANG H, LIU G, et al. Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking. Front Aging Neurosci. 2022;14:940166.
[26] HU D, DONG Z, LI B, et al. Mechanical force directs proliferation and differentiation of stem cells. Tissue Eng Part B Rev. 2023;29(2):141-150.
[27] MIYASHITA S, AHMED NE, MURAKAMI M, et al. Mechanical forces induce odontoblastic differentiation of mesenchymal stem cells on three-dimensional biomimetic scaffolds. J Tissue Eng Regen Med. 2017;11(2):434-446.
[28] HATA M, NARUSE K, OZAWA S, et al. Mechanical stretch increases the proliferation while inhibiting the osteogenic differentiation in dental pulp stem cells. Tissue Eng Part A. 2013;19(5-6):625-633.
[29] SHIBUTANI N, HOSOMICHI J, ISHIDA Y, et al. Influence of occlusal stimuli on the microvasculature in rat dental pulp. Angle Orthod. 2010; 80(2):316-321.
[30] YU V, DAMEK-POPRAWA M, NICOLL SB, et al. Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells. Biochem Biophys Res Commun. 2009,386(4):661-665.
[31] CAI X, ZHANG Y, YANG X, et al. Uniaxial cyclic tensile stretch inhibits osteogenic and odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med. 2011;5(5):347-353.
[32] 肖敏,陈博,李明伟,等.机械压应力刺激对人牙髓干细胞体外增殖矿化的影响[J].牙体牙髓牙周病学杂志,2015,25(4):187-192.
[33] YANG H, SHU YX, WANG LY, et al. Effect of cyclic uniaxial compressive stress on human dental pulp cells in vitro. Connect Tissue Res. 2018; 59(3):255-262.
[34] 李峻青,何文喜,郭倩,等.流体静水压力对牙髓干细胞成牙/成骨分化的影响[J].中国组织工程研究,2021,25(31):4976-4980.
[35] FEKRAZAD R, ARANY P. Photobiomodulation therapy in clinical dentistry. Photobiomodul Photomed Laser Surg. 2019;37(12):737-738.
[36] COTLER HB, CHOW RT, HAMBLIN MR, et al. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol. 2015;2(5):00068.
[37] 刘源,惠以宁,姜冰,等.LED红光上调MAPK信号促进炎性环境中人牙髓干细胞成骨/成牙本质分化[J].口腔疾病防治,2023,31(10): 701-711.
[38] JIAQI C, YIMENG S, JIAYING L, et al. Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1. J Photochem Photobiol B. 2022;233:112472.
[39] ZACCARA IM, GINANI F, MOTA-FILHO HG, et al. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci. 2015;30(9):2259-2264.
[40] ANNA T, ATHINA B, ELEANA K, et al. Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci. 2017;32(1):201-210.
[41] PINHEIRO C, DE PINHO MC, ARANHA AC, et al. Low power laser therapy: a strategy to promote the osteogenic differentiation of deciduous dental pulp stem cells from cleft lip and palate patients. Tissue Eng Part A. 2018;24(7-8):569-575.
[42] BIDAR M, BAHLAKEH A, MAHMOUDI M, et al. Does the application of GaAlAs laser and platelet-rich plasma induce cell proliferation and increase alkaline phosphatase activity in human dental pulp stem cells? Lasers Med Sci. 2021;36(6):1289-1295.
[43] AMID R, KADKHODAZADEH M, GILVARI SM, et al. Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: an in vitro study. J Lasers Med Sci. 2022;13:e1.
[44] BELEMA-BEDADA F, UCHIDA S, MARTIRE A, et al. Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell. 2008;2(6):566-575.
[45] WU D, CHANG X, TIAN J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19(1):209.
[46] NAYAK BP, DOLKART O, SATWALEKAR P, et al. Effect of the pulsed electromagnetic field (PEMF) on dental implants stability: a randomized controlled clinical trial. Materials (Basel). 2020;13(7): 1667.
[47] WU H, LI C, MASOOD M, et al. Static magnetic fields regulate t-type calcium ion channels and mediate mesenchymal stem cells proliferation. Cells. 2022;11(15):2460.
[48] OZGUN A, GARIPCAN B. Magnetic field-induced Ca(2+) intake by mesenchymal stem cells is mediated by intracellular Zn(2+) and accompanied by a Zn(2+) influx. Biochim Biophys Acta Mol Cell Res. 2021;1868(9):119062.
[49] LEW WZ, HUANG YC, HUANG KY, et al. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med. 2018;12(1):19-29.
[50] LEW WZ, FENG SW, LIN CT, et al. Use of 0.4-Tesla static magnetic field to promote reparative dentine formation of dental pulp stem cells through activation of p38 MAPK signalling pathway. Int Endod J. 2019;52(1):28-43.
[51] HSU SH, CHANG JC. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology. 2010;62(2):143-155.
[52] ZHENG L, ZHANG L, CHEN L, et al. Static magnetic field regulates proliferation, migration, differentiation, and YAP/TAZ activation of human dental pulp stem cells. J Tissue Eng Regen Med. 2018;12(10): 2029-2040.
[53] 麦麦提依明·哈力克,热孜亚·艾尼,陈晓涛,等.恒定磁场作用下TGF-β3对兔牙髓干细胞成骨分化潜能的体外研究[J].临床口腔医学杂志,2019,35(12):719-723.
[54] 夏阳,陈慧敏,胡姝颖,等.静磁场连续曝磁对牙髓干细胞增殖和分化的影响[J].南京医科大学学报(自然科学版),2020,40(2): 191-194.
[55] SAMIEI M, AGHAZADEH Z, ABDOLAHINIA ED, et al. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells. Acta Odontol Scand. 2020;78(7):494-500.
[56] HANMOI L, MYEONGHYUN N, YUMI K, et al. Increasing odontoblast-like differentiation from dental pulp stem cells through increase of β-catenin/p-GSK-3β expression by low-frequency electromagnetic field. Biomedicines. 2021;9(8):1049.
[57] SHARMA A, CLEMENS RA, GARCIA O, et al. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Reports. 2022;17(1):1-13.
[58] LI L, ZHANG C, CHEN JL, et al. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Cell Prolif. 2019;52(2):e12539.
[59] MAYER-WAGNER S, HAMMERSCHMID F, BLUM H, et al. Effects of single and combined low frequency electromagnetic fields and simulated microgravity on gene expression of human mesenchymal stem cells during chondrogenesis. Arch Med Sci. 2018;14(3):608-616.
[60] CUI Z, LIANG L, YUANDA J, et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 2018;32(8): 4444-4458.
[61] 杨典凇,潘爽,何丽娜,等.整合素α6对模拟微重力下人牙髓干细胞粘附能力的影响[J].口腔医学研究,2016,32(4):361-364.
[62] 牛玉梅,张巍巍,曹涛,等.模拟微重力影响人牙髓干细胞的矿化能力与RhoA-Rho激酶信号通路相关性研究[J].口腔医学,2016, 36(5):399-402.
[63] LIU L, CHENG Y, WANG J, et al. Simulated microgravity suppresses osteogenic differentiation of mesenchymal stem cells by inhibiting oxidative phosphorylation. Int J Mol Sci. 2020;21(24):9747.
[64] 张锋,邓旭亮,梅芳,等.空间微重力环境对人牙髓间充质细胞的影响初探[J].科技导报,2007,25(2):34-37.
[65] 费晓磊,张巍巍,李艳萍,等.模拟微重力对人牙髓干细胞-PLGA复合物矿化的影响[J].口腔医学研究,2013,29(2):135-137.
[66] HE L, PAN S, LI Y, et al. Increased proliferation and adhesion properties of human dental pulp stem cells in PLGA scaffolds via simulated microgravity. Int Endod J. 2016;49(2):161-173.
[67] LI Y, HE L, PAN S, et al. Three-dimensional simulated microgravity culture improves the proliferation and odontogenic differentiation of dental pulp stem cell in PLGA scaffolds implanted in mice. Mol Med Rep. 2017;15(2):873-878.
[68] TING G, CHIN HB, MAN LEC, et al. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells International. 2016;2016:9204574.
[69] ZHOU M, LIU NX, SHI SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine. 2018;14(4):1227-1236.
[70] ALSHEMARY AZ, PAZARÇEVIREN AE, KESKIN D, et al. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications. Biomed Mater. 2019;14(5):55010.
[71] CHANG B, MA C, FENG J, et al. Dental pulp stem cell polarization: effects of biophysical factors. J Dent Res. 2021;100(10):1153-1160.
[72] MOHAMMED E, BEHEREI HH, EL-ZAWAHRY M, et al. Osteogenic enhancement of modular ceramic nanocomposites impregnated with human dental pulp stem cells: an approach for bone repair and regenerative medicine. J Genet Eng Biotechnol. 2022;20(1):123.
[73] AZARYAN E, HANAFI-BOJD MY, ALEMZADEH E, et al. Effect of PCL/nHAEA nanocomposite to osteo/odontogenic differentiation of dental pulp stem cells. BMC Oral Health. 2022;22(1):505.
[74] EJEIAN F, BAHARVAND H, NASR-ESFAHANI M H. Hedgehog signalling is dispensable in the proliferation of stem cells from human exfoliated deciduous teeth. Cell Biol Int. 2014;38(4):480-487.
[75] TIAN Y, XU Y, FU Q, et al. Osterix is required for Sonic hedgehog-induced osteoblastic MC3T3-E1 cell differentiation. Cell Biochem Biophys. 2012;64(3):169-176.
[76] MA D, YU H, XU S, et al. Stathmin inhibits proliferation and differentiation of dental pulp stem cells via sonic hedgehog/Gli. J Cell Mol Med. 2018;22(7):3442-3451.
[77] KORNSUTHISOPON C, CHANSAENROJ A, MANOKAWINCHOKE J, et al. Non-canonical Wnt signaling participates in Jagged1-induced osteo/odontogenic differentiation in human dental pulp stem cells. Sci Rep. 2022;12(1):7583.
[78] ZHONG TY, ZHANG ZC, GAO YN, et al. Loss of Wnt4 expression inhibits the odontogenic potential of dental pulp stem cells through JNK signaling in pulpitis. Am J Transl Res. 2019;11(3):1819-1826.
[79] ZENG K, KANG Q, LI Y, et al. EVL promotes osteo-/odontogenic differentiation of dental pulp stem cells via activating JNK signaling pathway. Stem Cells Int. 2023;2023:7585111. |