[1] PATRICK B, AKHTAR T, KOUSAR R, et al. Carbon nanomaterials: emerging roles in immuno-oncology. Int J Mol Sci. 2023; 24(7):6600.
[2] CUI F, LI T, WANG D, et al. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. J Hazard Mater. 2022;431: 128597.
[3] TORRINHA A, OLIVEIRA TMBF, RIBEIRO FWP, et al. Application of nanostructured carbon-based electrochemical (bio)sensors for screening of emerging pharmaceutical pollutants in waters and aquatic species: a review. Nanomaterials (Basel). 2020;10: 1268.
[4] INTISAR A, RAMZAN A, SAWAIRA T, et al. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials-A review. Chemosphere. 2022;293:133538.
[5] FARRE M, KANTIANI L, PETROVIC M, et al. Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. J Chromatogr A. 2012;1259:86-99.
[6] TUPONE MG, PANELLA G, D’ANGELO M, et al. An update on graphene-based nanomaterials for neural growth and central nervous system regeneration. Int J Mol Sci. 2021;22:13047.
[7] SADEGHI MS, SANGRIZEH FH, JAHANI N, et al. Graphene oxide nanoarchitectures in cancer therapy: drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ Res. 2023;237: 117027.
[8] LIU Y, LIU H, GUO S, et al. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications. Carbohydr Polym. 2024;323:121445.
[9] CUI L, LIANG J, LIU H, et al. Nanomaterials for angiogenesis in skin tissue engineering. Tissue Eng Part B Rev. 2020;26(3):203-216.
[10] XU X, SHEN Z, SHAN Y, et al. Application of tissue engineering techniques in tracheal repair: a bibliometric study. Bioengineered. 2023;14:2274150.
[11] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究, 2015,33(2):242-253.
[12] 贺雅洁,王延博,杨硕.基于CiteSpace对中医药治疗子宫肌瘤的可视化分析[J].世界中西医结合杂志,2022,17(12): 2374-2380.
[13] PALMIERIV, DI PIETRO L, PERINI G, et al. Graphene oxide nano-concentrators selectively modulate RNA trapping according to metal cations in solution. Front Bioeng Biotechnol. 2020;8:421.
[14] DONG P, RAKESH KP, MANUKUMARH M, et al. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg Chem. 2019;85:325-336.
[15] 谢恩礼,陶慧敏.血流限制训练在临床康复医学中的应用趋势[J].中国组织工程研究,2024,28(2):258-262.
[16] CELLOT G, JACQUEMIN L, REINA G, et al. Bonding of neuropeptide y on graphene oxide for drug delivery applications to the central nervous system. ACS Appl Nano Mater. 2022;5(12):17640-17651.
[17] YE R, SONG W, FENG M, et al. Potential interference of graphene nanosheets in immune response via disrupting the recognition of HLA-presented KK10 by TCR: a molecular dynamics simulation study. Nanoscale. 2021;13(45):19255-19263.
[18] 李一飞,周开宇,沈建通,等.基于关键词共现分析的我国先心病介入诊疗发展的可视化研究[J]. 临床儿科杂志, 2012,30(7):631-637.
[19] 徐鹏,赵京霞,高铸烨,等.2012—2021年国家自然科学基金脑卒中中医内科研究领域申请与资助分析——基于CiteSpace的可视化分析[J].长春中医药大学学报,2022,38(12):1311-1319.
[20] LING L, OUYANG Y, HU Y. Research trends on nanomaterials in gastric cancer: a bibliometric analysis from 2004 to 2023. J Nanobiotechnology. 2023;21(1):2481.
[21] LI X, VINOTHINI K, RAMESH T, et al. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Deliv. 2020;27(1):791-804.
[22] SUN L, ZHANG R, ZHANG T, et al. Synthesis, applications and biosafety evaluation of carbon dots derived from herbal medicine. Biomed Mater. 2023. doi:10.1088/1748-605X/acdeb8.
[23] KONG B, YANGT, CHENG F, et al. Carbon dots as nanocatalytic medicine for anti-inflammation therapy. J Colloid Interface Sci. 2022;611:545-553.
[24] HE JH, CHENG YY, YANG T, et al. Functional preserving carbon dots-based fluorescent probe for mercury (II) ions sensing in herbal medicines via coordination and electron transfer. Anal Chim Acta. 2018;1035:203-210.
[25] KANWAL A, BIBI N, HYDER S, et al. Recent advances in green carbon dots (2015-2022): synthesis, metal ion sensing, and biological applications. Beilstein J Nanotechnol. 2022;13:1068-1107.
[26] 黄伟,苏晓丽,赵江宁,等.基于CiteSpace的严重创伤患者低体温研究的可视化分析[J].临床医学研究与实践, 2023,8(4):1-4.
[27] 尤伟杰,郭青,张楠,等.基于关键词共现和文献共被引的医学期刊微信公众平台热点可视化分析[J].中华医学图书情报杂志,2019,28(2):76-80.
[28] HONG G, DIAO S, ANTARIS AL, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015; 115(19SI):10816-10906.
[29] 杨丽萍,段培蓓,杨玲,等.肿瘤患者疼痛-疲乏-睡眠障碍症状群的研究现状及热点可视化分析[J].中华全科医学, 2023,21(1):139-143.
[30] SANCHEZ VC, JACHAK A, HURT RH, et al. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Rev. 2012;25(1):15-34.
[31] LIM SY, SHEN W, GAO Z. Carbon quantum dots and their applications. Chem Res Toxicol. 2015;44(1):362-381.
[32] NEL AE, MAEDLER L, VELEGOL D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Chem Soc Rev. 2009;8(7):543-557.
[33] POLAND CA, DUFFIN R, KINLOCH I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Mater. 2008;3(7):423-428.
[34] 田娇,赵锡丽,冉倩.基于Web of Science数据库的糖尿病饮食研究的可视化分析[J].循证护理,2023,9(21): 3902-3908.
[35] 邹婧,楚尧娟,杜秋争,等.酪氨酸激酶抑制剂在HER2阳性乳腺癌中应用的可视化分析[J].中国药房,2023,34(24): 3036-3041.
[36] HOSNEDLOVA B, KEPINSKA M, FERNANDEZ C, et al. Carbon nanomaterials for targeted cancer therapy drugs: a critical review. Chem Rec. 2019;19(2-3):502-522.
[37] CHEN D, DOUGHERTY CA, ZHU K, et al. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release. 2015;210:230-245.
[38] SAJJADI M, NASROLLAHZADEH M, JALEH B, et al. Carbon-based nanomaterials for targeted cancer nanotherapy:recent trends and future prospects. J Drug Target. 2021;29(7):716-741.
[39] HAN C, CHEN R, WU X, et al. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots. Anal Chim Acta. 2021;1187: 339160.
[40] LIU H, CHEN J, QIAO S, et al. Carbon-based nanomaterials for bone and cartilage regeneration: a review. ACS Biomater Sci Eng. 2021;7(10):4718-4735.
[41] LIU C, QIN H, KANG L, et al. Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy. J Mater Chem B. 2018;6(47):7908-7915.
[42] AHMAD R, FU J, HE N, et al. Advanced gold nanomaterials for photothermal therapy of cancer. J Nanosci Nanotechnol. 2016;16(1):67-80.
[43] RADZI M RM, JOHARI NA, ZAWAWI WFAW, et al. In vivo evaluation of oxidized multiwalled-carbon nanotubes-mediated hyperthermia treatment for breast cancer. Biomater Adv. 2022;134:112586.
[44] AOKI K, SAITO N. Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials (Basel). 2020; 10:2642.
[45] 王嘉昀,吴俏兰,高祖,等.基于科学知识图谱的桔梗研究热点与趋势分析[J].中医药导报,2023,29(10):110-118.
[46] 张春婷,李波,谢立国,等. 温泉微生物合成的碳纳米材料在生物成像方面的应用[J]. 材料科学与工程学报,2023, 41(4):561-567.
[47] SHIN SR, JUNG SM, ZALABANY M, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369-2380.
[48] WU Y, SHI X, LI Y, et al. Carbon nanohorns promote maturation of neonatal rat ventricular myocytes and inhibit proliferation of cardiac fibroblasts: a promising scaffold for cardiac tissue engineering. Nanoscale Res Lett. 2016; 11(1):284.
[49] MARTINELLI V, CELLOT G, TOMA FM, et al. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 2012;12(4):1831-1838.
[50] FENG Z, WANG T, ZHAO B, et al. Soft graphene nanofibers designed for the acceleration of nerve growth and development. Adv Mater. 2015;27(41): 6462-6468.
[51] YAN L, ZHAO B, LIU X, et al. Aligned nanofibers from polypyrrole/graphene as electrodes for regeneration of optic nerve via electrical stimulation. ACS Appl Mater Interfaces. 2016;8(11):6834-6840.
[52] JAKUS AE, SECOR EB, RUTZ AL, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9(4):4636-4648.
[53] RAJA IS, KANG MS, HONG SW, et al. State-of-the-art techniques for promoting tissue regeneration: combination of three-dimensional bioprinting and carbon nanomaterials. Int J Bioprint. 2023;9(1): 181-198.
[54] ZHANG J, EYISOYLU H, QIN X, et al. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 2021;121:637-652.
[55] JAKUS AE, SECOR EB, RUTZ AL, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9(4):4636-4648.
[56] OSOULI-BOSTANABAD K, MASALEHDAN T, KAPSA RMI, et al. Traction of 3D and 4D printing in the healthcare industry: from drug delivery and analysis to regenerative medicine. ACS Biomater Sci Eng. 2022;8(7): 2764-2797.
[57] POURMASOURMASOUMI P, MOGHADDAM A, MAHAND SN, et al. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. J Biomater Sci Polym Ed. 2023;34(1):108-146.
[58] MIAO S, CUI H, NOWICKI M, et al. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering. Adv Biosyst. 2018;2:1800101.
[59] QASIM M, CLARKSON ANN, HINKLEY SFR. Green synthesis of carbon nanoparticles (CNPS) from biomass for biomedical applications. Int J Mol Sci. 2023;24:1023.
[60] ASHRAFIZADEH M, SAEBAR H, GHOLAMI MH, et al. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv. 2022;19(4):355-382.
[61] RAJA IS, SONG S, KANG MS, et al. Toxicity of zero- and one-dimensional carbon nanomaterials. Nanomaterials (Basel). 2019;9:1214.
[62] JOHNSON AP, GANGADHARAPPA HV, PRAMOD K. Graphene nanoribbons: a promising nanomaterial for biomedical applications. J Control Release. 2020;325: 141-162.
[63] RAHMAN MA, ABUL BARKAT H, HARWANSH RK, et al. Carbon-based nanomaterials: carbon nanotubes, graphene, and fullerenes for the control of burn infections and wound healing. Curr Pharm Biotechnol. 2022;23(12):1483-1496. |