[1] WALKER-BONE K, PALMER KT, READING I, et al. Prevalence and impact of musculoskeletal disorders of the upper limb in the general population. Arthritis Rheum. 2004;51(4):642-651.
[2] ABUDULA X, MAIMAITI P, YASHENG A, et al. Factors associated with frozen shoulder in adults: a retrospective study. BMC Musculoskelet Disord. 2024;25(1):493.
[3] GREEN HD, BURDEN E, CHEN J, et al. Hyperglycaemia is a causal risk factor for upper limb pathologies. Int J Epidemiol. 2024;53(1):dyad187.
[4] 蔡玲.葛根汤辅助治疗糖尿病合并高血压患者的临床治疗体会[J].糖尿病新世界,2018,21(16):71-72.
[5] LIU S, WANG L, ZHANG Z, et al. The potential of astragalus polysaccharide for treating diabetes and its action mechanism. Front Pharmacol. 2024;15:1339406.
[6] GUO M, GAO J, JIANG L, et al. Astragalus Polysaccharide Ameliorates Renal Inflammatory Responses in a Diabetic Nephropathy by Suppressing the TLR4/NF-κB Pathway. Drug Des Devel Ther. 2023; 17:2107-2118.
[7] LI YS, ZHANG J, TIAN GH, et al. Kirenol, darutoside and hesperidin contribute to the anti-inflammatory and analgesic activities of Siegesbeckia pubescens makino by inhibiting COX-2 expression and inflammatory cell infiltration. J Ethnopharmacol. 2021;268:113547.
[8] SANG W, ZHONG Z, LINGHU K, et al. Siegesbeckia pubescens Makino inhibits Pam3CSK4-induced inflammation in RAW 264.7 macrophages through suppressing TLR1/TLR2-mediated NF-κB activation. Chin Med. 2018;13:37.
[9] YU H, ZHENG L, XU L, et al. Potent effects of the total saponins from Dioscorea nipponica Makino against streptozotocin-induced type 2 diabetes mellitus in rats. Phytother Res. 2015;29(2):228-240.
[10] RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.
[11] UNIPROT CONSORTIUM. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523-D531.
[12] BARSHIR R, FISHILEVICH S, INY-STEIN T, et al. GeneCaRNA: A Comprehensive Gene-centric Database of Human Non-coding RNAs in the GeneCards Suite. J Mol Biol. 2021;433(11):166913.
[13] KNOX C, WILSON M, KLINGER CM, et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024;52(D1):D1265-D1275.
[14] HAMOSH A, AMBERGER JS, BOCCHINI C, et al. Online Mendelian Inheritance in Man (OMIM®): Victor McKusick’s magnum opus. Am J Med Genet A. 2021;185(11):3259-3265.
[15] SHERMAN BT, HAO M, QIU J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022; 50(W1):W216-W221.
[16] 左文明,李锦萍,李彩明,等.UPLC-Q-TOF-MS/MS结合网络药理学和分子对接探讨椭圆叶花锚抗肝炎的药效物质及作用机制[J].天然产物研究与开发,2021, 33(11):1946-1956.
[17] NEVIASER AS, NEVIASER RJ. Adhesive capsulitis of the shoulder. J Am Acad Orthop Surg. 2011;19(9):536-542.
[18] RAMÍREZ-ALARCÓN K, VICTORIANO M, MARDONES L, et al. Phytochemicals as Potential Epidrugs in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne). 2021;12:656978.
[19] CAGLIERO E, APRUZZESE W, PERLMUTTER GS, et al. Musculoskeletal disorders of the hand and shoulder in patients with diabetes mellitus. Am J Med. 2002;112(6):487-490.
[20] LU Y, WANG W, LIU J, et al. Vascular complications of diabetes: A narrative review. Medicine (Baltimore). 2023;102(40): e35285.
[21] WU B, NIU Z, HU F. Study on Risk Factors of Peripheral Neuropathy in Type 2 Diabetes Mellitus and Establishment of Prediction Model. Diabetes Metab J. 2021;45(4):526-538.
[22] GREEN HD, JONES A, EVANS JP, et al. A genome-wide association study identifies 5 loci associated with frozen shoulder and implicates diabetes as a causal risk factor. PLoS Genet. 2021;17(6):e1009577.
[23] ERRAHALI Y, MAJJAD A, ISSOUANI J, et al. Shoulder capsulitis: What relation with diabetes mellitus in a moroccan population? Ann Afr Med. 2023;22(1):45-48.
[24] CHEN K, TIAN T, GAO P, et al. Unveiling potential therapeutic targets for diabetes-induced frozen shoulder through Mendelian randomization analysis of the human plasma proteome. BMJ Open Diabetes Res Care. 2024;12(3):e003966.
[25] CSONKA V, VARJÚ C, LENDVAY M. Diabetes mellitus-related musculoskeletal disorders: Unveiling the cluster of diseases. Prim Care Diabetes. 2023;17(6):548-553.
[26] DEEPIKA, MAURYA PK. Health Benefits of Quercetin in Age-Related Diseases. Molecules. 2022;27(8):2498.
[27] BABU S, JAYARAMAN S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother. 2020;131:110702.
[28] 周强,张坤,李富强,等.β-谷甾醇缓解LPS诱导的急性肺损伤大鼠炎症反应和纤维化[J].西部医学,2022,34(6):813-818.
[29] KHAN Z, NATH N, RAUF A, et al. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact. 2022;365:110117.
[30] VALITOVA J, RENKOVA A, BECKETT R, et al. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci. 2024;25(15):8122.
[31] Bakrim S, Benkhaira N, Bourais I, et al. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel). 2022;11(10):1912.
[32] ALAM W, KHAN H, SHAH MA, et al. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules. 2020;25(18):4073.
[33] PERIFERAKIS A, PERIFERAKIS K, BADARAU IA, et al. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci. 2022; 23(23):15054.
[34] BANGAR SP, CHAUDHARY V, SHARMA N, et al. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr. 2023;63(28):9580-9604.
[35] IMRAN M, SALEHI B, SHARIFI-RAD J, et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules. 2019; 24(12):2277.
[36] ZU G, SUN K, LI L, et al. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci Rep. 2021;11(1):22959.
[37] NGUYEN TLA, BHATTACHARYA D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules. 20222;27(8):2494.
[38] TIAN J, WANG XQ, TIAN Z. Focusing on Formononetin: Recent Perspectives for its Neuroprotective Potentials. Front Pharmacol. 2022;13:905898.
[39] XU HT, ZHENG Q, TAI ZG, et al. Formononetin attenuates psoriasiform inflammation by regulating interferon signaling pathway. Phytomedicine. 2024; 128:155412.
[40] SIDDIKA T, BALASURIYA N, FREDERICK MI, et al. Delivery of Active AKT1 to Human Cells. Cells. 2022;11(23):3834.
[41] CHEN J, SOMANATH PR, RAZORENOVA O, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11(11):1188-1196.
[42] FU J, YU MG, LI Q, et al. Insulin’s actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Mol Metab. 2021;52:101236.
[43] BRADLEY JR. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149-160.
[44] PARK JE, KANG E, HAN JS. HM-chromanone attenuates TNF-α-mediated inflammation and insulin resistance by controlling JNK activation and NF-κB pathway in 3T3-L1 adipocytes. Eur J Pharmacol. 2022;921: 174884.
[45] ZHU P, LIU G, WANG X, et al. Transcription factor c-Jun modulates GLUT1 in glycolysis and breast cancer metastasis. BMC Cancer. 2022;22(1):1283. |