中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (26): 5608-5620.doi: 10.12307/2025.787

• 组织构建实验造模 experimental modeling in tissue construction • 上一篇    下一篇

激素性股骨头坏死衰老关键基因的生物信息学鉴定和验证

丘博元1,2,刘  飞1,童思文1,欧志学2,王伟伟1   

  1. 1广西中医药大学研究生院,广西壮族自治区南宁市  530000;2桂林市中医医院关节与运动医学科,广西壮族自治区桂林市  541000
  • 收稿日期:2024-10-11 接受日期:2024-11-12 出版日期:2025-09-18 发布日期:2025-02-25
  • 通讯作者: 欧志学,主任医师,博士,教授,桂林市中医医院关节与运动医学科,广西壮族自治区桂林市 541000 并列通讯作者:王伟伟,医师,广西中医药大学在读博士,广西中医药大学研究生院,广西壮族自治区南宁市 530000
  • 作者简介:丘博元,男,1998年生,广西壮族自治区玉林市人,汉族,广西中医药大学在读硕士,主要从事骨关节退变与缺血性疾病的中医防治研究。
  • 基金资助:
    广西中医药大学研究生教育创新计划项目(YCSY2023067),项目负责人:丘博元;广西自然科学基金项目(2023GXNSFAA026412),项目负责人:欧志学;广西壮族自治区中医药管理局自筹经费科研课题(GXZYZ20210372),项目负责人:欧志学

Bioinformatics identification and validation of aging key genes in hormonal osteonecrosis of the femoral head

Qiu Boyuan1, 2, Liu Fei1, Tong Siwen1, Ou Zhixue2, Wang Weiwei1   

  1. 1Graduate School of Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China; 2Department of Joint and Sports Medicine, Guilin Traditional Chinese Medicine Hospital, Guilin 541000, Guangxi Zhuang Autonomous Region, China
  • Received:2024-10-11 Accepted:2024-11-12 Online:2025-09-18 Published:2025-02-25
  • Contact: Ou Zhixue, Chief physician, MD, Professor, Department of Joint and Sports Medicine, Guilin Traditional Chinese Medicine Hospital, Guilin 541000, Guangxi Zhuang Autonomous Region, China Co-corresponding author: Wang Weiwei, Physician, PhD candidate, Graduate School of Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • About author:Qiu Boyuan, Master candidate, Graduate School of Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China; Department of Joint and Sports Medicine, Guilin Traditional Chinese Medicine Hospital, Guilin 541000, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    Guangxi University of Chinese Medicine Graduate Education Innovation Program, No. YCSY2023067 (to QBY); Guangxi Natural Science Foundation Project, No. 2023GXNSFAA026412 (to OZX); Guangxi Zhuang Autonomous Region Traditional Chinese Medicine Administration Self-Financing Scientific Research Project, No. GXZYZ20210372 (to OZX) 

摘要:


文题释义:
激素性股骨头坏死:是一种因长期或大量使用皮质醇类药物导致股骨头血供中断而坏死的严重慢性疾病。 
衰老:是指细胞及器官的逐渐退化并伴随相关功能的下降,与大多数慢性疾病关系密切。

背景:激素性股骨头坏死与衰老紧密相连,但调控靶点和机制尚不明确。通过生物信息学联合机器学习分析并加以实验验证,确定细胞衰老介导激素性股骨头坏死发生发展的关键基因,将为激素性股骨头坏死的防治提供新思路。
目的:使用生物信息学分析筛选激素性股骨头坏死的衰老核心基因并进行实验验证,以探讨其作用机制。
方法:从GEO数据库的GPL15207平台获取了GSE123568 数据集,其中包含了30例激素性股骨头坏死患者与10名健康对照的外周血清样本基因表达谱;从CellAge数据库获取了279个细胞衰老相关基因的数据。对激素性股骨头坏死基因谱进行差异分析及加权基因共表达网络(WGCNA)分析,两者与衰老相关基因取交集再取并集得到激素性股骨头坏死衰老潜在基因,并进行GO和KEGG富集分析。机器学习方法筛出枢纽基因,构建Nomogram模型,进行共识聚类及免疫浸润分析。最后收集临床股骨头样本通过qPCR及Western blot检测方法进行验证。
结果与结论:①共获得41个潜在基因,主要富集在衰老及氧化应激反应等生物过程,以及FoxO及肿瘤坏死因子信号通路中。②机器学习鉴定后得到枢纽基因过氧化氢酶、结缔组织生长因子、叉头框蛋白O3、胰岛素受体底物2和丝裂原活化蛋白激酶激酶11,Nomogram模型预测能力良好。③共识聚类分析将患者分为a,b和c共3组,过氧化氢酶、叉头框蛋白O3、胰岛素受体底物2和丝裂原活化蛋白激酶激酶11在3个分子亚型之间表达存在差异(P < 0.05),免疫浸润结果显示活化CD4+ T细胞、活化CD8+ T细胞、嗜酸性粒细胞等免疫细胞的丰度在3个分子亚类中存在差异(P < 0.05)。④qPCR和Western blot结果显示,激素性股骨头坏死组过氧化氢酶、结缔组织生长因子、叉头框蛋白O3和丝裂原活化蛋白激酶激酶11比对照组表达降低(P < 0.05),胰岛素受体底物2的表达升高(P < 0.05)。⑤上述结果证实,通过结合生物信息学与机器学习深入分析,并进一步实验验证,最终确定了5个激素性股骨头坏死衰老相关枢纽基因,分别是过氧化氢酶、结缔组织生长因子、叉头框蛋白O3、胰岛素受体底物2及丝裂原活化蛋白激酶激酶11,这些基因可能通过调控细胞衰老过程为未来激素性股骨头坏死的预防和治疗提供潜在的分子靶点。
https://orcid.org/0009-0003-9712-5431(丘博元);https://orcid.org/0000-0002-0595-6154(欧志学);https://orcid.org/0000-0003-0841-0496(王伟伟)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 激素性股骨头坏死, 衰老, WGCNA分析, 机器学习, 免疫浸润分析, 实验验证

Abstract: BACKGROUND: Hormonal osteonecrosis of the femoral head is strongly associated with aging, but the regulatory targets and mechanisms are still unclear. Through bioinformatics combined with machine learning analysis and experimental verification, the key genes of hormonal osteonecrosis of the femoral head mediated by cell senescence will be identified, which will provide new ideas for the prevention and treatment of hormonal osteonecrosis of the femoral head.
OBJECTIVE: To screen and validate the senescence core genes of hormonal osteonecrosis of the femoral head using bioinformatics analysis to explore its mechanism of action.
METHODS: The GSE123568 dataset was obtained from the GPL15207 platform of the GEO database, which contained the gene expression profiles of peripheral serum samples of 30 hormonal osteonecrosis of the femoral head patients and 10 healthy controls. Data on 279 cellular senescence-related genes were obtained from the CellAge database. Differential analysis and weighted correlation network analysis (WGCNA) were performed on hormonal osteonecrosis of the femoral head gene profiles, and both were intersected with senescence-related genes and then concatenated to obtain hormonal osteonecrosis of the femoral head senescence potential genes, and GO and KEGG analyses were performed. The machine learning method screened out the pivotal genes, constructed nomogram model, and performed consensus clustering and immune infiltration analysis. Finally, clinical femoral samples were collected for validation by qPCR and western blot assay.
RESULTS AND CONCLUSION: (1) 41 potential genes were obtained, which were mainly enriched in biological processes such as aging and oxidative stress response, as well as FoxO and tumor necrosis factor signaling pathways. (2) The pivotal genes catalase, connective tissue growth factor, forkhead box protein O3, insulin receptor substrate 2, and mitogen-activated protein kinase kinase 11 were obtained after machine learning identification, and the predictive ability of nomogram model was good. (3) The patients were classified into three groups, namely a, b and c, by the consensus clustering analysis. Catalase, forkhead box protein O3, insulin receptor substrate 2, and mitogen-activated protein kinase kinase 11 were differentially expressed among the three molecular subtypes (P < 0.05). Results of immune infiltration showed that the abundance of immune cells, such as activated CD4+ T cells, activated CD8+ T cells, and eosinophils, differed among the three molecular subclasses (P < 0.05). (4) The results of qPCR and western blot assay showed that the expression of catalase, connective tissue growth factor, forkhead box protein O3, and mitogen-activated protein kinase kinase 11 was lower in hormonal osteonecrosis of the femoral head group compared to the control group (P < 0.05), and the expression of insulin receptor substrate 2 was elevated (P < 0.05). (5) It is concluded that through in-depth analysis combined with bioinformatics and machine learning, and further experimental verification, five hormonal osteonecrosis of the femoral head age-related hub genes were finally identified. These genes are catalase, connective tissue growth factor, forkhead box o3, insulin receptor substrate 2, and serine/threonine kinase 11. These genes may provide potential molecular targets for the prevention and treatment of hormonal osteonecrosis of the femoral head in the future by regulating the cellular aging process.

Key words: hormonal osteonecrosis of the femoral head, aging, WGCNA analysis, machine learning, immune infiltration analysis, experimental validation

中图分类号: