中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (25): 5422-5433.doi: 10.12307/2025.504
• 干细胞综述 stem cell review • 上一篇 下一篇
梁智锋1,2,杨英才2,程千纲1,2,贾永兴1,2,王 博2
收稿日期:
2024-03-27
接受日期:
2024-05-17
出版日期:
2025-09-08
发布日期:
2024-12-26
通讯作者:
杨英才,主任医师,山西医科大学附属运城市中心医院,山西省运城市 043100
作者简介:
梁智锋,1998年生,广东省中山市人,汉族,2022年海南医学院毕业,医师,主要从事手足外伤和骨关节疾病研究。
基金资助:
Liang Zhifeng1, 2, Yang Yingcai2, Cheng Qiangang1, 2, Jia Yongxing1, 2, Wang Bo2
Received:
2024-03-27
Accepted:
2024-05-17
Online:
2025-09-08
Published:
2024-12-26
Contact:
Yang Yingcai, Chief physician, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng 043100, Shanxi Province, China
About author:
Liang Zhifeng, Physician, Shanxi Medical University, Taiyuan 030607, Shanxi Province, China; Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng 043100, Shanxi Province, China
Supported by:
摘要:
文题释义:
基质细胞衍生因子1:是一种具有很强趋化活性的稳态/炎性趋化因子,属于CXC趋化因子家族成员,在关节软骨和软骨下骨中主要由肥大软骨细胞、未成熟成骨细胞和骨髓间充质干细胞表达。中图分类号:
梁智锋, 杨英才, 程千纲, 贾永兴, 王 博. 基质细胞衍生因子1在软骨和软骨下骨稳态中的作用[J]. 中国组织工程研究, 2025, 29(25): 5422-5433.
Liang Zhifeng, Yang Yingcai, Cheng Qiangang, Jia Yongxing, Wang Bo . Effect of stromal cell-derived factor-1 in cartilage and subchondral bone homeostasis[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(25): 5422-5433.
1] MURPHY PM, HEUSINKVELD L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine. 2018;109:2-10. [2] NAGASAWA T, KIKUTANI H, KISHIMOTO T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91(6):2305-2309. [3] SHIROZU M, NAKANO T, INAZAWA J, et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics. 1995;28(3):495-500. [4] KANBE K, TAKAGISHI K, CHEN Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum. 2002;46(1):130-137. [5] KANBE K, TAKEMURA T, TAKEUCHI K, et al. Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. J Bone Joint Surg Br Vol. 2004;86(2):296-300. [6] GLYN-JONES S, PALMER AJR, AGRICOLA R, et al. Osteoarthritis. Lancet (London, England). 2015;386(9991):376-387. [7] GUANG LG, BOSKEY AL, ZHU W. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. Int J Biochem Cell Biol. 2012;44(11):1825-1833. [8] CHEN Y, LIN S, SUN Y, et al. Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling. Osteoarthritis Cartilage. 2017;25(6):986-994. [9] GLEICHMANN M, GILLEN C, CZARDYBON M, et al. Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neurosci. 2000;12(6):1857-1866. [10] YU L, CECIL J, PENG SB, et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene. 2006;374:174-179. [11] MURPHY JW, YUAN H, KONG Y, et al. Heterologous quaternary structure of CXCL12 and its relationship to the CC chemokine family. Proteins. 2010;78(5):1331-1337. [12] HERBERG S, FULZELE S, YANG N, et al. Stromal cell-derived factor-1β potentiates bone morphogenetic protein-2-stimulated osteoinduction of genetically engineered bone marrow-derived mesenchymal stem cells in vitro. Tissue Eng Part A. 2013;19(1-2):1-13. [13] HERBERG S, SHI X, JOHNSON MH, et al. Stromal cell-derived factor-1β mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. PLoS One. 2013;8(3):e58207. [14] MENDELSON A, FRANK E, ALLRED C, et al. Chondrogenesis by chemotactic homing of synovium, bone marrow, and adipose stem cells in vitro. FASEB J. 2011;25(10):3496-3504. [15] LAGURI C, SADIR R, RUEDA P, et al. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. PLoS One. 2007;2(10):e1110. [16] RUEDA P, BALABANIAN K, LAGANE B, et al. The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins. PLoS One. 2008; 3(7):e2543. [17] REN Z, LANTERMANS H, KUIL A, et al. The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma. J Hematol Oncol. 2021;14(1):11. [18] JUNG Y, KIM JK, LEE E, et al. CXCL12γ induces human prostate and mammary gland development. Prostate. 2020;80(13):1145-1156. [19] FRANCO D, RUEDA P, LENDíNEZ E, et al. Developmental expression profile of the CXCL12gamma isoform: insights into its tissue-specific role. Anatomical Record (Hoboken, NJ: 2007). 2009;292(6):891-901. [20] RAY P, STACER AC, FENNER J, et al. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 2015;34(16):2043-2051. [21] LIBERT F, PARMENTIER M, LEFORT A, et al. Complete nucleotide sequence of a putative G protein coupled receptor: RDC1. Nucleic Acids Res. 1990;18(7):1917. [22] LIBERT F, PASSAGE E, PARMENTIER M, et al. Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor. Genomics. 1991;11(1):225-227. [23] KUANG L, WU J, SU N, et al. FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice. Ann Rheum Dis. 2020;79(1): 112-122. [24] 解志波,陈科明,黄从伍,等.膝骨关节炎患者巨噬细胞趋化力与疾病严重程度的相关性[J].中国骨伤,2023,36(6):514-518. [25] WEI ST, HUANG YC, CHIANG JY, et al. Gain of CXCR7 function with mesenchymal stem cell therapy ameliorates experimental arthritis via enhancing tissue regeneration and immunomodulation. Stem Cell Res Ther. 2021;12(1):314. [26] NUGRAHA A, KITAURA H, OHORI F, et al. C‑X‑C receptor 7 agonist acts as a C‑X‑C motif chemokine ligand 12 inhibitor to ameliorate osteoclastogenesis and bone resorption. Mol Med Rep. 2022;25(3):78. [27] KIM GW, HAN MS, PARK HR, et al. CXC chemokine ligand 12a enhances chondrocyte proliferation and maturation during endochondral bone formation. Osteoarthritis Cartilage. 2015;23(6):966-974. [28] YANG T, LI C, LI Y, et al. MicroRNA-146a-5p alleviates the pathogenesis of osteoarthritis by inhibiting SDF-1/CXCR4-induced chondrocyte autophagy. Int Immunopharmacol. 2023;117:109938. [29] 赵奎,潘润桑,蓝奉军,等.骨关节炎中自噬与凋亡相互作用的分子机制[J].中国组织工程研究,2024,28(18):2912-2917. [30] WEI L, SUN X, KANBE K, et al. Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J Rheumatol. 2006;33(9):1818-1826. [31] XIANG Y, LI Y, YANG L, et al. miR-142-5p as a CXCR4-targeted microRNA attenuates SDF-1-induced chondrocyte apoptosis and cartilage degradation via inactivating MAPK signaling pathway. Biochem Res Int. 2020;2020:4508108. [32] GAO ZY, YU LL, SHI BX, et al. T140 inhibits apoptosis and promotes proliferation and matrix formation through the SDF-1/CXC receptor-4 signaling pathway in endplate chondrocytes of the rat intervertebral discs. World Neurosurg. 2020;133:e165-e172. [33] LI J, CHEN H, CAI L, et al. SDF-1α promotes chondrocyte autophagy through CXCR4/mTOR signaling axis. Int J Mol Sci. 2023;24(2):1710. [34] CHEN Y, ZENG D, WEI G, et al. Pyroptosis in osteoarthritis: molecular mechanisms and therapeutic implications. J Inflamm Res. 2024;17: 791-803. [35] WANG S, MOBASHERI A, ZHANG Y, et al. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology. 2021;29(3): 695-704. [36] LI J, CHEN H, ZHANG D, et al. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis Cartilage. 2021;29(3):313-322. [37] LUI JC. Home for a rest: stem cell niche of the postnatal growth plate. J Endocrinol. 2020;246(1):R1-R11. [38] 薛松,姜亚飞,桑伟林,等.肥大软骨细胞在骨关节炎发病中的作用[J].中国矫形外科杂志,2020,28(6):522-526. [39] WEI L, KANBE K, LEE M, et al. Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation. Dev Biol. 2010;341(1):236-245. [40] 马丁,师东良,李姣,等.关节软骨损伤再生修复研究进展[J].生命科学,2021,33(11):1353-1362. [41] RICHTER W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med. 2009;266(4):390-405. [42] GUO X, MA Y, MIN Y, et al. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater. 2023;20:501-518. [43] WYNN RF, HART CA, CORRADI-PERINI C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643-2645. [44] WRIGHT LM, MALONEY W, YU X, et al. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone. 2005;36(5):840-853. [45] SORDI V, MALOSIO ML, MARCHESI F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005;106(2):419-427. [46] SHI M, LI J, LIAO L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92(7):897-904. [47] SUKEGAWA A, IWASAKI N, KASAHARA Y, et al. Repair of rabbit osteochondral defects by an acellular technique with an ultrapurified alginate gel containing stromal cell-derived factor-1. Tissue Engineering Part A. 2012;18(9-10):934-945. [48] MUSTAPICH T, SCHWARTZ J, PALACIOS P, et al. A novel strategy to enhance microfracture treatment with stromal cell-derived factor-1 in a rat model. Front Cell Dev Biol. 2021;8:595932. [49] CHEN Y, WU T, HUANG S, et al. Sustained release SDF-1α/TGF-β1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair. ACS Appl Mater Interfaces. 2019;11(16):14608-14618. [50] MARTIN AR, PATEL JM, LOCKE RC, et al. Nanofibrous hyaluronic acid scaffolds delivering TGF-β3 and SDF-1α for articular cartilage repair in a large animal model. Acta Biomater. 2021;126:170-182. [51] CHEN X, LIANG XM, ZHENG J, et al. Stromal cell-derived factor-1α regulates chondrogenic differentiation via activation of the Wnt/β-catenin pathway in mesenchymal stem cells. World J Stem Cells. 2023;15(5):490-501. [52] YANG J, LI Y, LIU Y, et al. Role of the SDF-1/CXCR4 signaling pathway in cartilage and subchondral bone in temporomandibular joint osteoarthritis induced by overloaded functional orthopedics in rats. J Orthop Surg Res. 2020;15(1):330. [53] LIN C, LIU L, ZENG C, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res. 2019;7(1):5. [54] YANG T, ZHANG J, CAO Y, et al. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J Dent Res. 2015;94(6):803-812. [55] DONG Y, LIU H, ZHANG X, et al. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis. Int J Mol Sci. 2016;17(6):943. [56] GOTO Y, AOYAMA M, SEKIYA T, et al. CXCR4+ CD45- cells are niche forming for osteoclastogenesis via the SDF-1, CXCL7, and CX3CL1 signaling pathways in bone marrow. Stem Cells. 2016;34(11):2733-2743. [57] SHIMA K, KIMURA K, ISHIDA M, et al. C-X-C motif chemokine 12 enhances lipopolysaccharide-induced osteoclastogenesis and bone resorption in vivo. Calcif Tissue Int. 2018;103(4):431-442. [58] ADAPALA NS, ROOT S, LORENZO J, et al. PI3K activation increases SDF-1 production and number of osteoclast precursors, and enhances SDF-1-mediated osteoclast precursor migration. Bone Rep. 2019;10:100203. [59] 李园琦,林海,罗红蓉,等.线粒体自噬与骨髓间充质干细胞成软骨分化的关联[J].中国组织工程研究,2020,24(31):4954-4960. [60] QIN H, ZHAO X, HU YJ, et al. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis. BioMed Res Int. 2021;2021:1-13. [61] MENG Z, XIN L, FAN B. SDF-1α promotes subchondral bone sclerosis and aggravates osteoarthritis by regulating the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Musculoskeletal Disord. 2023;24(1):275. [62] XIONG W, GUO X, CAI X. SDF-1/CXCR4 axis promotes osteogenic differentiation of BMSCs through the JAK2/STAT3 pathway. Folia Histochem Cytobiol. 2021;59(3):187-194. [63] MENG Z, FENG G, HU X, et al. SDF factor-1α promotes the migration, proliferation, and osteogenic differentiation of mouse bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway. Stem Cells Dev. 2021;30(2):106-117. [64] HE Q, LI R, HU B, et al. Stromal cell‐derived factor‐1 promotes osteoblastic differentiation of human bone marrow mesenchymal stem cells via the lncRNA‐H19/miR‐214‐5p/BMP2 axis. J Gene Med. 2021;23(9):e3366. [65] LISIGNOLI G, TONEGUZZI S, PIACENTINI A, et al. CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. J Cell Physiol. 2006;206(1):78-85. [66] TAKAYAMA T, DAI J, TACHI K, et al. The potential of stromal cell-derived factor-1 delivery using a collagen membrane for bone regeneration. J Biomater Appl. 2017;31(7):1049-1061. [67] ZHANG Z, WU H, HUANG S, et al. AMD3465 (hexahydrobromide) rescues the MG63 osteoblasts against the apoptosis induced by high glucose. Biomed Pharmacother. 2021;138:111476. [68] YILDIRIM N, AMANZHANOVA A, KULZHANOVA G, et al. Osteochondral Interface: Regenerative Engineering and Challenges. ACS Biomater Sci Eng. 2023;9(3):1205-1223. [69] QIN HJ, XU T, WU HT, et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone. 2019;125:140-150. [70] TOILLON I, VAN EEGHER S, PIGENET A, et al. Hypertrophic chondrocyte differentiation mediates osteochondral angiogenesis through SDF-1/CXCR4 axis during osteoarthritis. Osteoarthritis Cartilage. 2022;30: S323-S323. [71] 蒙旭晗,李彦林,毛健宇,等. CXCR4受体拮抗剂在骨性关节炎软骨退变中的作用[J].中国矫形外科杂志,2018,26(5):424-427. [72] 何璐,李彦林,蒙旭晗,等. C-X-C趋化因子受体4拮抗剂延缓豚鼠关节软骨的退变[J].中国组织工程研究,2022,26(14):2150-2154. [73] WANG G, LI Y, MENG X, et al. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs. J Orthop Surg Res. 2020;15(1):195. [74] GREEN J, TINSON RAJ, BETTS JHJ, et al. Suramin analogues protect cartilage against osteoarthritic breakdown by increasing levels of tissue inhibitor of metalloproteinases 3 (TIMP-3) in the tissue. Bioorg Med Chem. 2023;92:117424. [75] LU W, HE Z, SHI J, et al. AMD3100 attenuates post-traumatic osteoarthritis by maintaining transforming growth factor-β1-induced expression of tissue inhibitor of metalloproteinase-3 via the phosphatidylinositol 3-kinase/Akt pathway. Front Pharmacol. 2019;10:1554. [76] LIAO YX, FU ZZ, ZHOU CH, et al. AMD3100 reduces CXCR4-mediated survival and metastasis of osteosarcoma by inhibiting JNK and Akt, but not p38 or Erk1/2, pathways in in vitro and mouse experiments. Oncol Rep. 2015;34(1):33-42. [77] JIA D, LI Y, HAN R, et al. miR‑146a‑5p expression is upregulated by the CXCR4 antagonist TN14003 and attenuates SDF‑1‑induced cartilage degradation. Mol Med Rep. 2019;19(5):4388-4400. |
[1] | 韩海慧, 冉 磊, 孟晓辉, 辛鹏飞, 向 峥, 边艳琴, 施 杞, 肖涟波. 靶向成纤维细胞生长因子受体1信号改善类风湿关节炎的骨破坏[J]. 中国组织工程研究, 2025, 29(9): 1905-1912. |
[2] | 赵济宇, 王少伟. 叉头框转录因子O1信号通路与骨代谢[J]. 中国组织工程研究, 2025, 29(9): 1923-1930. |
[3] | 朱汉民, 王 松, 肖文琳, 张文静, 周 茜, 何 烨, 李 微, . 线粒体自噬调控骨代谢[J]. 中国组织工程研究, 2025, 29(8): 1676-1683. |
[4] | 尹 路, 蒋川锋, 陈俊杰, 易 明, 王子赫, 石厚银, 汪国友, 沈骅睿. 沙苑子苷A对关节软骨细胞凋亡的影响[J]. 中国组织工程研究, 2025, 29(8): 1541-1547. |
[5] | 王文涛, 侯振扬, 王熠军, 徐耀增. Apelin-13抑制巨噬细胞M1极化缓解全身炎症性骨丢失[J]. 中国组织工程研究, 2025, 29(8): 1548-1555. |
[6] | 刘 琪, 李林臻, 李玉生, 焦泓焯, 杨 程, 张君涛. 淫羊藿苷含药血清促进3种细胞共培养体系中软骨细胞增殖和干细胞成软骨分化[J]. 中国组织工程研究, 2025, 29(7): 1371-1379. |
[7] | 艾克帕尔·艾尔肯, 陈晓涛, 吾凡别克·巴合提. 成骨诱导人牙周膜干细胞来源外泌体促进炎症微环境下人牙周膜干细胞成骨分化[J]. 中国组织工程研究, 2025, 29(7): 1388-1394. |
[8] | 章镇宇, 梁秋健, 杨 军, 韦相宇, 蒋 捷, 黄林科, 谭 桢. 新橙皮苷治疗骨质疏松症的靶点及对骨髓间充质干细胞成骨分化的作用[J]. 中国组织工程研究, 2025, 29(7): 1437-1447. |
[9] | 杨治航, 孙祖延, 黄文良, 万 喻, 陈仕达, 邓 江. 神经生长因子促进兔骨髓间充质干细胞软骨分化并抑制肥大分化[J]. 中国组织工程研究, 2025, 29(7): 1336-1342. |
[10] | 李岳尧, 张 民, 杨家驹. 肉苁蓉苷A通过JNK/MAPK通路抑制破骨细胞活性[J]. 中国组织工程研究, 2025, 29(6): 1144-1151. |
[11] | 朗么磋, 张义林, 汪 莉. miR-338-3p靶向核因子κB受体活化因子配体影响牙槽骨成骨细胞增殖及凋亡[J]. 中国组织工程研究, 2025, 29(5): 899-907. |
[12] | 项 攀, 车艳军, 罗宗平. 压应力激活SOST/Wnt/β-catenin通路诱导软骨终板细胞退变[J]. 中国组织工程研究, 2025, 29(5): 951-957. |
[13] | 肖 放, 黄 雷, 王 琳. 磁性纳米材料与磁场效应加速骨损伤修复[J]. 中国组织工程研究, 2025, 29(4): 827-838. |
[14] | 孙现娟, 王秋花, 张锦艺, 杨杨杨, 王文双, 张晓晴. 不同静电纺丝膜上骨髓间充质干细胞的黏附、增殖与成血管平滑肌分化[J]. 中国组织工程研究, 2025, 29(4): 661-669. |
[15] | 马维邦, 徐 哲, 喻 乔, 欧阳东, 张如国, 罗 伟, 谢阳江, 刘 琛. 骨关节炎关节液外泌体中软骨退变相关基因筛选及细胞学验证[J]. 中国组织工程研究, 2025, 29(36): 7783-7789. |
1.1.7 检索策略 中英文数据库检索策略,见图1。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
基质细胞衍生因子1:是一种具有很强趋化活性的稳态/炎性趋化因子,属于CXC趋化因子家族成员,在关节软骨和软骨下骨中主要由肥大软骨细胞、未成熟成骨细胞和骨髓间充质干细胞表达。#br#软骨/软骨下骨:软骨和软骨下骨作为一个功能整体维持关节内环境的平衡。骨性关节炎时,软骨和软骨下骨稳态失衡,导致软骨降解、软骨细胞肥大化、软骨下骨异常骨重塑和骨软骨界面异常血管生成增多。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
基质细胞衍射因子1与CXC趋化因子受体4型和CXC趋化因子受体7型相互作用,激活多种下游信号通路,对软骨内成骨、骨形成、血管形成、多种器官发育、伤口愈合、炎症、骨性关节炎和肿瘤等生理和病理过程均有重要的影响。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||