中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (22): 4679-4686.doi: 10.12307/2025.406

• 组织工程口腔材料 tissue-engineered oral materials • 上一篇    下一篇

不同骨质条件下超短种植体应用于下颌后牙区的有限元分析

孜拉来·居来提,马吾兰江·阿不都仁木,艾克丽亚·艾尼瓦尔,热依拉·库尔班,尼加提·吐尔逊   

  1. 新疆医科大学第二附属医院口腔科,新疆维吾尔自治区乌鲁木齐市   830063
  • 收稿日期:2024-02-04 接受日期:2024-04-09 出版日期:2025-08-08 发布日期:2024-12-05
  • 通讯作者: 尼加提·吐尔逊,硕士,主任医师,副教授,新疆医科大学第二附属医院口腔科,新疆维吾尔自治区乌鲁木齐市 830063
  • 作者简介:孜拉来·居来提,女,1996年生,新疆维吾尔自治区乌鲁木齐市人,维吾尔族,新疆医科大学在读硕士,主要从事口腔种植修复相关技术的研究。
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2021D01C362)

Finite element analysis of ultrashort implants applied to the mandibular posterior tooth area under different bone conditions

Zilalai · Julaiti, Mawulanjiang · Abudurenmu, Aikeliya · Ainiwaer, Reyila · Kuerban, Nijiati · Tuersun   

  1. Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • Received:2024-02-04 Accepted:2024-04-09 Online:2025-08-08 Published:2024-12-05
  • Contact: Nijiati · Tuersun, Master, Chief physician, Associate professor, Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • About author:Zilalai · Julaiti, Master candidate, Department of Stomatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region, No. 2021D01C362

摘要:


文题释义:

三维有限元法:是一种重要的结构分析方法,它通过将结构离散化为有限个单元,并在每个单元上建立适当的数学模型,可以求解结构的力学响应和变形情况。
下颌骨不同骨质:通常颌骨骨质因牙槽骨吸收、萎缩程度、局部和全身因素不同存在个体差异。临床上根据密质骨与松质骨的含量比例及松质骨疏密程度,将牙槽骨质量分为4种类型:Ⅰ类,多数为皮质骨,指牙槽突保留完好;Ⅱ类,宽厚的皮质骨包绕致密的松质骨;Ⅲ类,薄的皮质骨包绕致密的松质骨;Ⅳ类,薄的皮质骨包绕疏松的松质骨。


背景:有研究利用三维有限元方法分析了种植体在不同皮质骨厚度中的应力情况,得出皮质骨厚度影响种植体-骨界面位移值、等效应力值及种植体各部件等效应力值的结果。目前超短种植体在不同下颌骨骨质中的临床应用还存在不确定性。

目的:利用三维有限元法分析超短种植体在下颌骨不同骨质中的应力分布及骨组织的应力分布情况。
方法:选取1名下颌第1磨牙缺失患者的CT影像资料,利用Mimics软件创建下颌骨第1磨牙区域的模型,根据超短种植体奥齿泰系统中
5 mm×5 mm TSⅢ型号绘制出所需要的植体及上部修复体模型,使用Geomagic Studio的偏置命令获取下颌4类不同骨质的模型(Ⅰ、Ⅱ、Ⅲ、Ⅳ类),将所有模型整合并交叉组合,给予不同方向载荷,分析各类模型受力后的范氏等效应力分布。

结果与结论:①垂直载荷时:皮质骨最大应力在Ⅰ、Ⅱ、Ⅲ类骨质中相对于Ⅳ类骨更趋向于稳定,力也从分散于种植体周围到Ⅳ类骨时逐渐集中至种植体颈部与皮质骨连接处;Ⅰ类骨中最大等效应力峰值在中央螺丝区域,Ⅱ、Ⅲ、Ⅳ类骨中最大应力峰值则统一在种植体颈部与基台连接处。②侧向载荷时:皮质骨最大应力随着骨质条件的减弱呈逐渐增大的趋势;Ⅰ-Ⅳ类骨质中,最大应力峰值都集中在种植体与基台连接处,Ⅰ-Ⅲ类骨中种植体本身所受应力随着骨质的减弱表现出逐渐增大的趋势,到Ⅳ类骨时应力有所减小,此规律同样适用于修复体基台以及松质骨所受应力。③各类骨质中侧向载荷时所受到的最大应力值比垂直向载荷更大。

https://orcid.org/0009-0009-1754-7663 (孜拉来·居来提) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 超短种植体, 三维有限元, 不同骨质, 应力分布, 骨组织

Abstract: BACKGROUND: Three-dimensional finite element method was used to analyze the stress of implants in different cortical bone thicknesses, and the results showed that cortical bone thickness affected the displacement value of the implant-bone interface, the equivalent stress value, and the equivalent stress value of each component of the implant. There are still uncertainties in the clinical application of ultrashort implants in different mandibular bones. 
OBJECTIVE: To analyze the stress distribution of ultrashort implant in different bone and bone tissue of mandible by three-dimensional finite element method.
METHODS: Cone-beam CT images of a patient with missing mandibular first molar were selected. Mimics software was used to create the model of the first molar region of the mandible. The required implant and upper prosthesis models were drawn according to the model of TS IIIφ5 mm×5 mm in the Orthodontic system. Geomagic Studio bias command was used to obtain the models of four different types of mandibular bone (classes I, II, III, and IV). All the models were integrated and cross-combined to give different directions of loading so as to analyze the Fann equivalent stress distribution of each model after being stressed.
RESULTS AND CONCLUSION: (1) Under vertical loading, the maximum stress of cortical bone in classes I, II, and III bone tended to be more stable than that in class IV bone, and the force gradually concentrated from around implant to the junction between implant neck and cortical bone when it was distributed in class IV bone. The peak value of equivalent stress in class I bone was in the screw region. In classes II, III, and IV bone, the maximum stress peak was at the junction between the implant neck and the abutment. (2) Under lateral loading, the maximum stress of cortical bone increased gradually with the weakening of bone condition. The maximum stress peaks in I-IV bone were concentrated at the junction of implant and abutment. In classes I-III bone, the stress of implant itself increased gradually with the weakening of bone, while in class IV bone, the stress decreased. This rule was also applicable to the stress of prosthesis abutment and cancellous bone. (3) The maximum stress of all kinds of bone under oblique load was larger than that under vertical load.

Key words: ultrashort implant, three-dimensional finite element, different bones, stress distribution, bone tissue

中图分类号: