中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (22): 4621-4628.doi: 10.12307/2025.441

• 组织工程骨材料 tissue-engineered bone •    下一篇

Gyroid结构钛仿生骨支架修复下颌骨节段性缺损的生物力学性能

姜至秀1,2,3,季俣辰1,2,3,刘丹瑜1,2,3,曹怡琳1,2,3,姜婷婷1,2,3,宋颐函1,2,3,王  磊1,2,3,王心彧1,2,3   

  1. 1黑龙江省生物医学材料及应用重点实验室,黑龙江省佳木斯市   154002;佳木斯大学,2口腔医学工程实验中心,3口腔医学院,黑龙江省佳木斯市   154002
  • 收稿日期:2024-03-22 接受日期:2024-05-10 出版日期:2025-08-08 发布日期:2024-09-30
  • 通讯作者: 王心彧,副主任医师,硕士生导师,黑龙江省生物医学材料及应用重点实验室,黑龙江省佳木斯市 154002;佳木斯大学,口腔医学工程实验中心,口腔医学院,黑龙江省佳木斯市 154002
  • 作者简介:姜至秀,女,1997年生,黑龙江省绥化市人,汉族,佳木斯大学口腔医学院在读硕士,执业医师,主要从事口腔颌面外科方向的研究。
  • 基金资助:
    黑龙江省自然科学基金项目(LH2022H089),项目负责人:王心彧

Biomechanical properties of Gyroid structured titanium bionic bone scaffolds for repairing segmental mandibular defects

Jiang Zhixiu1, 2, 3, Ji Yuchen1, 2, 3, Liu Danyu1, 2, 3, Cao Yilin1, 2, 3, Jiang Tingting1, 2, 3, Song Yihan1, 2, 3, Wang Lei1, 2, 3, Wang Xinyu1, 2, 3   

  1. 1Key Laboratory of Biomedical Materials and Clinical Application in Heilongjiang Province, Jiamusi 154002, Heilongjiang Province, China; 2Experimental Center for Stomatological Engineering, 3School of Stomatology, Jiamusi University, Jiamusi 154002, Heilongjiang Province, China
  • Received:2024-03-22 Accepted:2024-05-10 Online:2025-08-08 Published:2024-09-30
  • Contact: Wang Xinyu, Associate chief physician, Master’s supervisor, Key Laboratory of Biomedical Materials and Clinical Application in Heilongjiang Province, Jiamusi 154002, Heilongjiang Province, China; Experimental Center for Stomatological Engineering, and School of Stomatology, Jiamusi University, Jiamusi 154002, Heilongjiang Province, China
  • About author:Jiang Zhixiu, Master candidate, Practicing physician, Key Laboratory of Biomedical Materials and Clinical Application in Heilongjiang Province, Jiamusi 154002, Heilongjiang Province, China; Experimental Center for Stomatological Engineering, and School of Stomatology, Jiamusi University, Jiamusi 154002, Heilongjiang Province, China
  • Supported by:
    Heilongjiang Natural Science Foundation Project, No. LH2022H089 (to WXY)

摘要:

文题释义:
应力屏蔽现象:指当2种或者多种具有不同刚度的材料共同承载外力时,具有刚度较高的材料将会承担较多的载荷,而刚度较低的材料只承载较低的载荷。当骨组织中发生应力屏蔽现象时,骨上的应力水平往往长期处于较低的水平,使得骨组织逐渐发生吸收,造成损伤部位的骨质疏松,成为术后骨吸收的重要诱因。
Gyroid结构:是一种三重周期性最小表面结构,即在给定边界内最大限度地减少表面积。

背景:三周期最小表面的多孔结构是最有前景的骨科生物结构之一,其中的Gyroid结构具有高比表面积、高渗透率、均曲率为零等特点。
目的:通过有限元分析结合力学压缩实验测试,筛选出与下颌骨松质骨弹性模量范围相匹配的4 mm单胞Gyroid结构TC4仿生骨支架壁厚区间。
方法:建立不同壁厚(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 mm)4 mm单胞Gyroid结构有限元模型,分析Gyroid结构的等效弹性模量,筛选出与下颌骨松质骨弹性模量范围相匹配的Gyroid结构壁厚区间,壁厚分别为0.2,0.3,0.4,0.5,0.6,0.7 mm。根据有限元分析筛选结果,以Ti6Al4V为原料,采用选择性激光熔融技术制备不同壁厚的3D打印Gyroid结构试件,进行大颗粒喷砂酸蚀处理,通过力学压缩实验测试试件的弹性模量与抗压强度。
结果与结论:①有限元分析结果显示,随着壁厚的增加,Gyroid结构的等效弹性模量升高,其中壁厚为0.2-0.7 mm Gyroid结构的等效弹性模量在下颌骨松质骨弹性模量范围内(1.5-4.0 GPa),用于3D打印Gyroid结构试件;②力学压缩实验结果显示,随着壁厚的增加,Gyroid结构试件的弹性模量与抗压强度均升高,其中0.3-0.5 mm壁厚Gyroid结构试件的弹性模量在下颌骨松质骨弹性模量范围内,0.3-0.7 mm壁厚Gyroid结构试件的抗压强度符合下颌骨的力学性能;③结果显示0.3-0.5 mm壁厚Gyroid结构与下颌骨的弹性模量范围相适应。
https://orcid.org/0009-0003-0180-3753 (姜至秀)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 节段性骨缺损, Gyroid结构, 3D打印, 选择性激光熔融, 有限元, 力学性能

Abstract: BACKGROUND: Porous structures based on triple periodic minimal surfaces are one of the most promising orthopedic biostructures, among which the Gyroid structure is characterized by high specific surface area, high permeability, and zero mean curvature. 
OBJECTIVE: To screen the wall thickness interval of TC4 bionic bone scaffolds with 4 mm single-cell Gyroid structure matching the elastic modulus range of cancellous bone of the mandible through finite element analysis combined with mechanical compression test testing. 
METHODS: The finite element model of the 4 mm single-cell Gyroid structure with different wall thickths (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 mm) was established. The equivalent elastic modulus of the Gyroid structure was analyzed, and the wall thickness interval of the Gyroid structure matching the elastic modulus range of the maxillary resinous bone was selected with different wall thicknesses of 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 mm, respectively. According to finite element analysis screening results, the material selected was Ti6Al4V. Selective laser melting was used to prepare 3D printed Gyroid structure specimens. The surface treatment was carried out by large-grained sand blasting and acid etching. The elastic modulus and compressive strength of the specimen were tested by mechanical compression experiment.
RESULTS AND CONCLUSION: (1) The finite element analysis results showed that the equivalent elastic modulus of the Gyroid structure increased with the increase of wall thickness, and the equivalent elastic modulus of the Gyroid structure with wall thickness of 0.2-0.7 mm was within the range of the elastic modulus of the spongy bone of the mandible (1.5-4.0 GPa), which was used for 3D printing of the Gyroid structure specimen. (2) The mechanical compression test results showed that the elastic modulus and compressive strength of the Gyroid structural specimen increased with the increase of wall thickness, and the elastic modulus of the Gyroid structural specimen with wall thickness of 0.3-0.5 mm was within the range of the elastic modulus of the cancellous bone of the mandible. The compressive strength of the Gyroid specimen with 0.3-0.7 mm wall thickness was consistent with the mechanical properties of the mandible. (3) The results show that the Gyroid structure of 0.3-0.5 mm wall thickness is compatible with the range of elastic modulus of the mandible.

Key words: segmental bone defect, Gyroid structure, 3D printing, selective laser melting, finite element, mechanical property

中图分类号: