中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (16): 3449-3457.doi: 10.12307/2025.430

• 材料力学及表面改性 material mechanics and surface modification • 上一篇    下一篇

基于三周期极小曲面晶胞梯度支架的设计及力学性能

朱文博,张旭婧,许  燕,石欣桐   

  1. 新疆大学智能制造现代产业学院(机械工程学院),新疆维吾尔自治区乌鲁木齐市   830046
  • 收稿日期:2024-03-06 接受日期:2024-04-19 出版日期:2025-06-08 发布日期:2024-09-05
  • 通讯作者: 张旭婧,博士,副教授,硕士生导师,新疆大学智能制造现代产业学院(机械工程学院),新疆维吾尔自治区乌鲁木齐市 830046
  • 作者简介:朱文博,男,1990年生,新疆维吾尔自治区五家渠市人,汉族,新疆大学在读硕士,主要从事3D打印与骨组织工程研究。
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2022D01C90),项目负责人:张旭婧

Design and mechanical performance of cell-gradient scaffolds based on three-period minimal surface

Zhu Wenbo, Zhang Xujing, Xu Yan, Shi Xintong   

  1. School of Intelligent Manufacturing Modern Industry (School of Mechanical Engineering), Xinjiang University, Urumqi 830046, Xinjiang Uygur Autonomous Region, China
  • Received:2024-03-06 Accepted:2024-04-19 Online:2025-06-08 Published:2024-09-05
  • Contact: Zhang Xujing, PhD, Associate professor, Master’s supervisor, School of Intelligent Manufacturing Modern Industry (School of Mechanical Engineering), Xinjiang University, Urumqi 830046, Xinjiang Uygur Autonomous Region, China
  • About author:Zhu Wenbo, Master candidate, School of Intelligent Manufacturing Modern Industry (School of Mechanical Engineering), Xinjiang University, Urumqi 830046, Xinjiang Uygur Autonomous Region, China
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region, No. 2022D01C90 (to ZXJ)

摘要:

文题释义:
三周期极小曲面:一种在三维空间中3个独立方向均呈周期性的极小曲面(曲面上任意点的平均曲率为零),晶胞之间相互连接,孔洞内壁过渡光滑,通过数学建模的方式构建几何模型,可构建高度定制的骨软骨支架。
晶胞梯度:三周期极小曲面晶胞顺序按照Z轴方向梯度变化,晶胞之间的过渡采用连接函数,可根据骨软骨特性选择合适的晶胞及孔径大小,此方法可以减少应力遮蔽,有效提高骨软骨支架的仿生性能及支架植入后的稳定性。

背景:现阶段骨软骨一体化支架的弹性模量与天然骨软骨相差较大,植入人体后会引起应力遮蔽现象,从而导致植入物松动变形,影响骨软骨组织修复。轴向三周期极小曲面晶胞梯度支架可与人体骨软骨组织孔隙率及弹性模量相匹配,为骨软骨支架设计提供一种新的思路。
目的:研究不同晶胞种类和孔径结构对晶胞梯度支架力学性能的影响。
方法:使用Gyroid(G)型、Diamond(D)型Primitive(P)型3种基础晶胞,通过三周期极小曲面数学建模,在梯度区域使用不同尺寸、不同种类晶胞,共计构建6种晶胞梯度支架(G-2P-4D、P-2D-4G、D-2P-4D、G-2D-4P、P-2G-4D、D-2G-4P),进行力学实验及仿真模拟实验,评估支架的力学性能,通过计算流体动力学仿真得到了支架内流体的流动性能参数。
结果与结论:有限元力学仿真和轴向压缩实验表明,P-2G-4D型与P-2D-4G型梯度支架的弹性模量相较高,分别为148.67 MPa和152.1 MPa,能够承受较高的轴向载荷,提高植入物的力学稳态;D-2P-4G型梯度支架应力分布最为均匀,可有效减少应力集中,使得连接函数区域均能够有效传递应力,减少应力遮蔽;G-2D-4P型梯度支架流动速率变化最小,为0.10-0.48 mm/s,渗透率较高,有利于植入后体液在支架内部流动。基于三周期极小曲面的晶胞梯度支架设计为骨软骨支架设计提供了新思路,仿真分析结果也为支架植入人体后的骨整合预测提供了参考。

https://orcid.org/0009-0005-9420-5625 (朱文博) 
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 三周期极小曲面, 晶胞梯度, 连接函数, 骨软骨支架, 力学性能, 流体性能

Abstract: BACKGROUND: The elastic modulus of bone-cartilage integration scaffolds differs significantly from that of natural bone-cartilage tissue, which can lead to a stress shield effect. As a result, the implants become loose and deformed, affecting the repair of osteochondral tissue. Cell gradient scaffolds made by axial direction three-period minimal surface have the same porosity and elasticity modulus as the human body, which provides a new idea for bone-cartilage scaffold design.
OBJECTIVE: To study the effect of cell type and pore size on the mechanical properties of cell gradient scaffolds. 
METHODS: Three basic cells of Gyroid(G) type, Diamond(D) type, and Primitive(P) type were used. Through mathematical modeling of three-period minimal surface, different sizes and types of cells were used in the gradient region. A total of six kinds of cell gradient scaffolds (G-2P-4D, P-2D-4G, D-2P-4D, G-2D-4P, P-2G-4D, and D-2G-4P) were constructed and mechanical experiments and simulation experiments were conducted to evaluate the mechanical properties of the scaffolds. Flow performance parameters of the fluids in the scaffolds were obtained through computational fluid dynamics simulation. 
RESULTS AND CONCLUSION: Finite element mechanical simulation and compression experiment showed that P-2G-4D and P-2D-4G with the highest elastic modulus (148.67 MPa and 152.1 MPa), bearing a higher body load, improved the stability of the scaffold. The stress distribution in D-2P-4G was even and effectively reduced stress concentration, so that the connection function area could effectively transfer stress and reduce stress shielding. Flow rate was changing the least in G-2D-4P (0.10-0.48 mm/s). Permeability was higher than other scaffolds so that body fluids were able to flow though the gradient scaffold after implantation. This design method provides a new idea for the design of osteochondral scaffolds, and the simulation analysis results also provide a reference for the prediction of bone integration after implantation of scaffolds.

Key words: three-period minimal surface, cell gradient, connection function, bone cartilage scaffold, mechanical property, flow performance

中图分类号: