[1] COMPSTON JE, MCCLUNG MR, LESLIE WD. Osteoporosis. Lancet. 2019;393(10169): 364-376.
[2] BORGSTRÖM F, KARLSSON L, ORTSÄTER G, et al. Fragility fractures in Europe: burden, management and opportunities. Arch Osteoporos. 2020;15(1):59.
[3] ANAM AK, INSOGNA K. Update on Osteoporosis Screening and Management. Med Clin North Am. 2021;105(6):1117-1134.
[4] SALARI N, GHASEMI H, MOHAMMADI L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):609.
[5] CHEN P, LI Z, HU Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health. 2016;16(1):1039.
[6] LEE K, JANG Y, LEE H, et al. Transcriptome analysis reveals that Abeliophyllum distichum Nakai extract inhibits RANKL-mediated osteoclastogenesis mainly through suppressing Nfatc1 expression. Biology (Basel). 2020;9(8):212.
[7] ZHANG Y, XIE J, WEN S, et al. Evaluating the causal effect of circulating proteome on the risk of osteoarthritis-related traits. Ann Rheum Dis. 2023;82(12):1606-1617.
[8] 芦晶晶,李星,娄萍萍,等.血清铁蛋白水平与骨密度的相关性研究[J].中华老年骨科与康复电子杂志,2020,6(2):111-116.
[9] 郑淑蓓,郑育,李占园,等.成纤维细胞生长因子23、Klotho蛋白与血液透析患者骨密度改变的关系[J].中华肾脏病杂志,2016,32(5):321-326.
[10] 谭娟,刘媛媛,朱永芳,等.2型糖尿病患者血红蛋白水平与骨密度及骨质疏松之间的关系[J].中华内分泌代谢杂志, 2024,40(2):98-103.
[11] WU Y, WANG Z, YANG Y, et al. Exploration of potential novel drug targets and biomarkers for small cell lung cancer by plasma proteome screening. Front Pharmacol. 2023;14:1266782.
[12] CHEN L, PETERS JE, PRINS B, et al. Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke. Nat Commun. 2022;13(1):6143.
[13] YUAN S, XU F, LI X, et al. Plasma proteins and onset of type 2 diabetes and diabetic complications: proteome-wide Mendelian randomization and colocalization analyses. Cell Rep Med. 2023;4(9):101174.
[14] SANDERSON E, GLYMOUR MM, HOLMES MV, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2:6.
[15] SUHRE K. Genetic associations with ratios between protein levels detect new pQTLs and reveal protein-protein interactions. Cell Genom. 2024;4(3):100506.
[16] YAZDANPANAH N, YAZDANPANAH M, WANG Y, et al. Clinically relevant circulating protein biomarkers for type 1 diabetes: evidence from a two-sample Mendelian randomization study. Diabetes Care. 2022; 45(1):169-177.
[17] GHANBARI F, YAZDANPANAH N, YAZDANPANAH M, et al. Connecting genomics and proteomics to identify protein biomarkers for adult and youth-onset type 2 diabetes: a two-sample Mendelian randomization study. Diabetes. 2022;71(6):1324-1337.
[18] WINGO TS, LIU Y, GERASIMOV ES, et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. 2021;24(6):810-817.
[19] YANG H, CHEN L, LIU Y. Novel causal plasma proteins for hypothyroidism: a large-scale plasma proteome Mendelian randomization analysis. J Clin Endocrinol Metab. 2023; 108(2):433-442.
[20] BURGESS S, SMALL DS, THOMPSON SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2015;26(5):2333-2355.
[21] BURGESS S, BUTTERWORTH A, THOMPSON SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658-665.
[22] ZHOU S, TAO B, GUO Y, et al. Integrating plasma protein-centric multi-omics to identify potential therapeutic targets for pancreatic cancer. J Transl Med. 2024; 22(1):557.
[23] BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-525.
[24] ZHOU S, WEI T, LIU X, et al. Causal effects of COVID-19 on structural changes in specific brain regions: a Mendelian randomization study. BMC Med. 2023;21(1):261.
[25] KLINGELHUBER F, FRENDO-CUMBO S, OMAR-HMEADI M, et al. A spatiotemporal proteomic map of human adipogenesis. Nat Metab. 2024;6(5):861-879.
[26] SHAO C, ZHU J, MA X, et al. C19orf12 ablation causes ferroptosis in mitochondrial membrane protein-associated neurodegeneration. Free Radic Biol Med. 2022;182:23-33.
[27] VENCO P, BONORA M, GIORGI C, et al. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+. Front Genet. 2015; 6:185.
[28] CAI W, ZHANG J, YU Y, et al. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis. Adv Sci (Weinh). 2023;10(4):e2204871.
[29] YAN C, SHI Y, YUAN L, et al. Mitochondrial quality control and its role in osteoporosis. Front Endocrinol (Lausanne). 2023;14: 1077058.
[30] GENETOS DC, RAO RR, VIDAL MA. Betacellulin inhibits osteogenic differentiation and stimulates proliferation through HIF-1alpha. Cell Tissue Res. 2010; 340(1):81-89.
[31] MIYABE Y, LIAN J, MIYABE C, et al. Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nat Rev Rheumatol. 2019; 15(12):731-746.
[32] LIU W, WANG P, XIE Z, et al. Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis. 2019;10(3):188.
[33] ACHUDHAN D, LAI YL, LIN YY, et al. CXCL13 promotes TNF-α synthesis in rheumatoid arthritis through activating ERK/p38 pathway and inhibiting miR-330-3p generation. Biochem Pharmacol. 2024;221:116037.
[34] LEE J, HOSHINO A, INOUE K, et al. The HIV co-receptor CCR5 regulates osteoclast function. Nat Commun. 2017;8(1):2226.
[35] WINTGES K, BEIL FT, ALBERS J, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28(10):2070-2080.
[36] BRYLKA LJ, SCHINKE T. Chemokines in physiological and pathological bone remodeling. Front Immunol. 2019;10:2182.
[37] PENG R, DONG Y, KANG H, et al. Identification of genes with altered methylation in osteoclast differentiation and its roles in osteoporosis. DNA Cell Biol. 2022;41(6):575-589.
[38] VOTTA BJ, WHITE JR, DODDS RA, et al. CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues. J Cell Physiol. 2000;183(2):196-207.
[39] HUANG M, XU S, LIU L, et al. m6A methylation regulates osteoblastic differentiation and bone remodeling. Front Cell Dev Biol. 2021;9:783322.
[40] RAJASUNDARAM S, ZEBARDAST N, MEHTA P, et al. TIE1 and TEK signalling, intraocular pressure, and primary open-angle glaucoma: a Mendelian randomization study. J Transl Med. 2023;21(1):847.
[41] CAO X, LI T, XU B, et al. Endothelial TIE1 restricts angiogenic sprouting to coordinate vein assembly in synergy with its homologue TIE2. Arterioscler Thromb Vasc Biol. 2023;43(8):e323-e338.
[42] NOH J, YANG Y, JUNG H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int J Mol Sci. 2020; 21(20):7623.
[43] OKAMOTO K, NAKASHIMA T, SHINOHARA M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295-1349.
[44] ZHANG W, GAO R, RONG X, et al. Immunoporosis: role of immune system in the pathophysiology of different types of osteoporosis. Front Endocrinol (Lausanne). 2022;13:965258.
[45] WANG T, HE C. TNF-α and IL-6: the link between immune and bone system. Curr Drug Targets. 2020;21(3):213-227.
[46] FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022; 123:14-21.
[47] BRUNETTI G, D’AMELIO P, MORI G, et al. Editorial: Updates on osteoimmunology: what’s new on the crosstalk between bone and immune cells. Front Endocrinol (Lausanne). 2020;11:74.
[48] AMARASEKARA DS, YUN H, KIM S, et al. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 2018; 18(1):e8.
[49] XU J, YU L, LIU F, et al. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol. 2023;14:1222129.
[50] AMARASEKARA DS, KIM S, RHO J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 2021;22(6):2851.
[51] ZHAO Z, DU Y, YAN K, et al. Exercise and osteoimmunology in bone remodeling. FASEB J. 2024;38(7):e23554.
[52] Wu Z, Yang KG, Lam TP, et al. Genetic insight into the putative causal proteins and druggable targets of osteoporosis: a large-scale proteome-wide mendelian randomization study. Front Genet. 2023; 14:1161817.
|