[1] YE C, ZHENG X, AIHEMAITIJIANG S, et al. Sarcopenia and catastrophic health expenditure by socio-economic groups in China: an analysis of household-based panel data. J Cachexia Sarcopenia Muscle. 2022;13(3):1938-1947.
[2] WIEDMER P, JUNG T, CASTRO JP, et al. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev. 2021;65:101200.
[3] BELLANTI F, LO BUGLIO A, VENDEMIALE G. Mitochondrial Impairment in Sarcopenia. Biology (Basel). 2021;10(1):31.
[4] KIM MJ, LEE JM, MIN K, et al. Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil. 2023. doi: 10.1007/s10974-023-09643-7.
[5] ALWAY SE, PAEZ HG, PITZER CR, et al. Mitochondria transplant therapy improves regeneration and restoration of injured skeletal muscle. J Cachexia Sarcopenia Muscle. 2023;14(1):493-507.
[6] COEN PM, MUSCI RV, HINKLEY JM, et al. Mitochondria as a Target for Mitigating Sarcopenia. Front Physiol. 2019;9:1883.
[7] TIAN Q, MITCHELL BA, ZAMPINO M, et al. Muscle mitochondrial energetics predicts mobility decline in well-functioning older adults: The baltimore longitudinal study of aging. Aging Cell. 2022;21(2):e13552.
[8] FERRI E, MARZETTI E, CALVANI R, et al. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci. 2020;21(15):5236.
[9] COEN PM, JUBRIAS SA, DISTEFANO G, et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci. 2013;68(4):447-455.
[10] MARZETTI E, LEES HA, MANINI TM, et al. Skeletal muscle apoptotic signaling predicts thigh muscle volume and gait speed in community-dwelling older persons: an exploratory study. PLoS One. 2012;7(2):e32829.
[11] INCI N, KAMALI D, AKYILDIZ EO, et al. Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. Front Aging. 2022;3:828058.
[12] PICCA A, LEZZA AM. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67-75.
[13] REBELO AP, DILLON LM, MORAES CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis. 2011;34(4): 941-951.
[14] LIU HW, CHANG YC, CHAN YC, et al. Dysregulations of mitochondrial quality control and autophagic flux at an early age lead to progression of sarcopenia in SAMP8 mice. Biogerontology. 2020;21(3):367-380.
[15] HUANG DD, FAN SD, CHEN XY, et al. Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. Exp Gerontol. 2019;119:61-73.
[16] YANG S, LORO E, WADA S, et al. Functional effects of muscle PGC-1alpha in aged animals. Skelet Muscle. 2020;10(1):14.
[17] GARCIA S, NISSANKA N, MARECO EA, et al. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell. 2018;17(2):e12707.
[18] ROMANELLO V, SANDRI M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci. 2021;78(4):1305-1328.
[19] BELL MB, BUSH Z, MCGINNIS GR, et al. Adult skeletal muscle deletion of Mitofusin 1 and 2 impedes exercise performance and training capacity. J Appl Physiol (1985). 2019;126(2):341-353.
[20] RODRÍGUEZ-NUEVO A, DÍAZ-RAMOS A, NOGUERA E, et al. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J. 2018;37(10):e96553.
[21] MARZETTI E, CALVANI R, LORENZI M, et al. Association between myocyte quality control signaling and sarcopenia in old hip-fractured patients: Results from the Sarcopenia in HIp FracTure (SHIFT) exploratory study. Exp Gerontol. 2016;80:1-5.
[22] DULAC M, LEDUC-GAUDET JP, REYNAUD O, et al. Drp1 knockdown induces severe muscle atrophy and remodelling, mitochondrial dysfunction, autophagy impairment and denervation. J Physiol. 2020;598(17):3691-3710.
[23] TOUVIER T, DE PALMA C, RIGAMONTI E, et al. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation. Cell Death Dis. 2015;6(2):e1663.
[24] LEE TT, CHEN PL, SU MP, et al. Loss of Fis1 impairs proteostasis during skeletal muscle aging in Drosophila. Aging Cell. 2021;20(6):e13379.
[25] 侯国珍,郭琪,韩佩佩.肌少症自噬激活和线粒体质量控制信号途径的研究进展[J].中国医学科学院学报,2022,44(4):709-716.
[26] CHEN G, KROEMER G, KEPP O. Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Front Cell Dev Biol. 2020;8:200.
[27] GOUSPILLOU G, GODIN R, PIQUEREAU J, et al. Protective role of Parkin in skeletal muscle contractile and mitochondrial function. J Physiol. 2018; 596(13):2565-2579.
[28] LEDUC-GAUDET JP, REYNAUD O, HUSSAIN SN, et al. Parkin overexpression protects from ageing-related loss of muscle mass and strength. J Physiol. 2019;597(7):1975-1991.
[29] SUGIURA A, MCLELLAND GL, FON EA, et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014;33(19):2142-2156.
[30] MARZETTI E, GUERRA F, CALVANI R, et al. Circulating Mitochondrial-Derived Vesicles, Inflammatory Biomarkers and Amino Acids in Older Adults With Physical Frailty and Sarcopenia: A Preliminary BIOSPHERE Multi-Marker Study Using Sequential and Orthogonalized Covariance Selection - Linear Discriminant Analysis. Front Cell Dev Biol. 2020;8:564417.
[31] ALIZADEH PAHLAVANI H, LAHER I, et al. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol. 2022;13:1040381.
[32] GANAPATHY A, NIEVES JW. Nutrition and Sarcopenia-What Do We Know? Nutrients. 2020;12(6):1755.
[33] CHRISTIANSEN AR, LIPSHULTZ LI, HOTALING JM, et al. Selective androgen receptor modulators: the future of androgen therapy? Transl Androl Urol. 2020;9(Suppl 2):S135-S148.
[34] QIN Y, JIANG X, YANG Q, et al. The Functions, Methods, and Mobility of Mitochondrial Transfer Between Cells. Front Oncol. 2021;11:672781.
[35] JACKSON MV, MORRISON TJ, DOHERTY DF, et al. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells. 2016;34(8):2210-2223.
[36] AHMAD T, MUKHERJEE S, PATTNAIK B, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994-1010.
[37] LIU Z, SUN Y, QI Z, et al. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022;12(1):66.
[38] SHANMUGHAPRIYA S, LANGFORD D, NATARAJASEENIVASAN K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020;62:101128.
[39] PHINNEY DG, DI GIUSEPPE M, NJAH J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.
[40] VALENTI D, VACCA RA, MORO L, et al. Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. Int J Mol Sci. 2021;22(15):8312.
[41] MCCULLY JD, COWAN DB, PACAK CA, et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2009;296(1):H94-H105.
[42] SHIN B, SAEED MY, ESCH JJ, et al. A Novel Biological Strategy for Myocardial Protection by Intracoronary Delivery of Mitochondria: Safety and Efficacy. JACC Basic Transl Sci. 2019;4(8):871-888.
[43] 李震,曹新惠,王春明.线粒体移植疗法[J].中国细胞生物学学报,2023, 45(7):1089-1096.
[44] ZHANG Z, MA Z, YAN C, et al. Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019;356:322-331.
[45] GUARIENTO A, BLITZER D, DOULAMIS I, et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J Thorac Cardiovasc Surg. 2020;160(2):e15-e29.
[46] FANG SY, ROAN JN, LEE JS, et al. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg. 2021;161(5):e337-e347.
[47] JABBARI H, ROUSHANDEH AM, ROSTAMI MK, et al. Mitochondrial transplantation ameliorates ischemia/reperfusion-induced kidney injury in rat. Biochim Biophys Acta Mol Basis Dis. 2020;1866(8):165809.
[48] ULGER O, KUBAT GB, CICEK Z, et al. The effects of mitochondrial transplantation in acetaminophen-induced liver toxicity in rats. Life Sci. 2021;279:119669.
[49] MOSKOWITZOVA K, ORFANY A, LIU K, et al. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L78-L88.
[50] HU SS, LI RY, CAO XH, et al. Structural integrity is essential for the protective effect of mitochondrial transplantation against UV-induced cell death. J Photochem Photobiol B. 2022;234:112534.
[51] LEE AR, WOO JS, LEE SY, et al. Mitochondrial Transplantation Ameliorates the Development and Progression of Osteoarthritis. Immune Netw. 2022; 22(2):e14.
[52] YAN C, MA Z, MA H, et al. Mitochondrial Transplantation Attenuates Brain Dysfunction in Sepsis by Driving Microglial M2 Polarization. Mol Neurobiol. 2020;57(9):3875-3890.
[53] JAVANI G, BABRI S, FARAJDOKHT F, et al. Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats. Mech Ageing Dev. 2022;202:111632.
[54] ZHANG Z, WEI D, LI Z, et al. Hippocampal Mitochondrial Transplantation Alleviates Age-Associated Cognitive Decline via Enhancing Wnt Signaling and Neurogenesis. Comput Intell Neurosci. 2022;2022:9325302.
[55] ORFANY A, ARRIOLA CG, DOULAMIS IP, et al. Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg. 2020;71(3):1014-1026.
[56] LEE JM, HWANG JW, KIM MJ, et al. Mitochondrial Transplantation Modulates Inflammation and Apoptosis, Alleviating Tendinopathy Both In Vivo and In Vitro. Antioxidants (Basel). 2021;10(5):696.
[57] TIAN X, PAN M, ZHOU M, et al. Mitochondria Transplantation from Stem Cells for Mitigating Sarcopenia. Aging Dis. 2023;14(5):1700-1713.
[58] GUARIENTO A, PIEKARSKI BL, DOULAMIS IP, et al. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2021;162(3):992-1001.
[59] KAZA AK, WAMALA I, FRIEHS I, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153(4):934-943.
[60] MOSKOWITZOVA K, SHIN B, LIU K, et al. Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. J Heart Lung Transplant. 2019;38(1):92-99.
[61] 赵梓圳,付爱玲.线粒体治疗:一种新型的线粒体相关疾病的生物疗法[J].生物工程学报,2021,37(4):1168-1177.
[62] MCCULLY JD, COWAN DB, EMANI SM, et al. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion. 2017;34: 127-134.
[63] PREBLE JM, PACAK CA, KONDO H, et al. Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp. 2014;(91):e51682.
[64] CAICEDO A, FRITZ V, BRONDELLO JM, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.
[65] KIM MJ, HWANG JW, YUN CK, et al. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep. 2018; 8(1):3330.
[66] MACHEINER T, FENGLER VH, AGREITER M, et al. Magnetomitotransfer: An efficient way for direct mitochondria transfer into cultured human cells. Sci Rep. 2016;6:35571.
[67] CHANG JC, LIU KH, LI YC, et al. Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals. 2013;21(3-4):160-173.
[68] WU S, ZHANG A, LI S, et al. Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. Adv Sci (Weinh). 2018;5(3):1700530.
[69] WU TH, SAGULLO E, CASE D, et al. Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells. Cell Metab. 2016;23(5):921-929.
[70] GÄBELEIN CG, FENG Q, SARAJLIC E, et al. Mitochondria transplantation between living cells. PLoS Biol. 2022;20(3):e3001576.
[71] MAEDA H, KAMI D, MAEDA R, et al. TAT-dextran-mediated mitochondrial transfer enhances recovery from models of reperfusion injury in cultured cardiomyocytes. J Cell Mol Med. 2020;24(9):5007-5020.
[72] ZHU Z, LI X, WANG X, et al. Photobiomodulation augments the effects of mitochondrial transplantation in the treatment of spinal cord injury in rats by facilitating mitochondrial transfer to neurons via Connexin 36. Bioeng Transl Med. 2022;8(3):e10473. |