[1] BELFIORE R, RODIN A, FERREIRA E, et al. Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell. 2019;18(1):e12873.
[2] PANG K, JIANG R, ZHANG W, et al. An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res. 2022;32(2):157-175.
[3] BALUSU S, HORRÉ K, THRUPP N, et al. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science. 2023;381(6663):1176-1182.
[4] HOWARTH C, GLEESON P, ATTWELL D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222-1232.
[5] CUNNANE SC, TRUSHINA E, MORLAND C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19(9):609-633.
[6] ROLFE DF, BROWN GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3): 731-758.
[7] TAKAHASHI S. Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int J Mol Sci. 2021;22(12):6568.
[8] PAN RY, HE L, ZHANG J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022;34(4):634-648.e6.
[9] SAITO ER, MILLER JB, HARARI O, et al. Alzheimer’s disease alters oligodendrocytic glycolytic and ketolytic gene expression. Alzheimers Dement. 2021;17(9):1474-1486.
[10] ZHANG SS, ZHU L, PENG Y, et al. Long-term running exercise improves cognitive function and promotes microglial glucose metabolism and morphological plasticity in the hippocampus of APP/PS1 mice. J Neuroinflammation. 2022;19(1):34.
[11] LI S, SHENG ZH. Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci. 2022;23(1):4-22.
[12] TZIORAS M, MCGEACHAN RI, DURRANT CS, et al. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol. 2023;19(1):19-38.
[13] ASHLEIGH T, SWERDLOW RH, BEAL MF. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023;19(1):333-342.
[14] VENKATARAMAN AV, MANSUR A, RIZZO G, et al. Widespread cell stress and mitochondrial dysfunction occur in patients with early Alzheimer’s disease. Sci Transl Med. 2022;14(658):eabk1051.
[15] HUANG CW, RUST NC, WU HF, et al. Low glucose induced Alzheimer’s disease-like biochemical changes in human induced pluripotent stem cell-derived neurons is due to dysregulated O-GlcNAcylation. Alzheimers Dement. 2023;19(11):4872-4885.
[16] AN Y, VARMA VR, VARMA S, et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 2018;14(3): 318-329.
[17] KÜNTZELMANN A, GUENTHER T, HABERKORN U, et al. Impaired cerebral glucose metabolism in prodromal Alzheimer’s disease differs by regional intensity normalization. Neurosci Lett. 2013;534:12-17.
[18] WANG W, ZHAO F, MA X, et al. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener. 2020;15(1):30.
[19] SAMANTA S, AKHTER F, ROY A, et al. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer’s disease. Brain. 2023:awad432. doi: 10.1093/brain/awad
[20] BUTTERFIELD DA, HALLIWELL B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3): 148-160.
[21] PUCHALSKA P, CRAWFORD PA. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017;25(2):262-284.
[22] CUNNANE SC, COURCHESNE-LOYER A, ST-PIERRE V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci. 2016;1367(1):12-20.
[23] MUSA-VELOSO K, LIKHODII SS, CUNNANE SC. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr. 2002;76(1):65-70.
[24] MUSA-VELOSO K, LIKHODII SS, RARAMA E, et al. Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition. 2006;22(1):1-8.
[25] CROTEAU E, CASTELLANO CA, FORTIER M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol. 2018;107:18-26.
[26] CASTELLANO CA, NUGENT S, PAQUET N, et al. Lower brain 18F-fluorodeoxyglucose uptake but normal 11C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J Alzheimers Dis. 2015;43(4):1343-1353.
[27] JENSEN NJ, WODSCHOW HZ, NILSSON M, et al. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int J Mol Sci. 2020;21(22):8767.
[28] DING F, YAO J, RETTBERG JR, et al. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One. 2013;8(11):e79977.
[29] FUKAO T, SONG XQ, MITCHELL GA, et al. Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res. 1997;42(4):498-502.
[30] PELLERIN L, BERGERSEN LH, HALESTRAP AP, et al. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res. 2005;79(1-2): 55-64.
[31] PIERRE K, PELLERIN L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1-14.
[32] CUNNANE SC, COURCHESNE-LOYER A, VANDENBERGHE C, et al. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer’s Disease. Front Mol Neurosci. 2016;9:53.
[33] ZHOU Y, SUN L, WANG H. Ketogenic Diet for Neonatal Hypoxic-Ischemic Encephalopathy. ACS Chem Neurosci. 2023;14(1):1-8.
[34] 韩维娜,徐晓庆,史晋宁,等.胰高血糖素样肽1受体激动剂治疗阿尔茨海默病的潜在靶点预测及验证[J].中国组织工程研究,2024, 28(16):2568-2573.
[35] DE LEON MJ, FERRIS SH, GEORGE AE, et al. Positron emission tomographic studies of aging and Alzheimer disease. AJNR Am J Neuroradiol. 1983;4(3):568-571.
[36] FARIA-PEREIRA A, MORAIS VA. Synapses: The Brain’s Energy-Demanding Sites. Int J Mol Sci. 2022;23(7):3627.
[37] ROJAS-MORALES P, TAPIA E, PEDRAZA-CHAVERRI J. β-Hydroxybutyrate: A signaling metabolite in starvation response? Cell Signal. 2016;28(8): 917-923.
[38] THEVENET J, DE MARCHI U, DOMINGO JS, et al. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J. 2016;30(5):1913-1926.
[39] TRIGO D, VITÓRIA JJ, DA CRUZ E SILVA OAB. Novel therapeutic strategies targeting mitochondria as a gateway in neurodegeneration. Neural Regen Res. 2023;18(5):991-995.
[40] HUANG WC, PENG Z, MURDOCK MH, et al. Lateral mammillary body neurons in mouse brain are disproportionately vulnerable in Alzheimer’s disease. Sci Transl Med. 2023;15(692):eabq1019.
[41] BLAUSTEIN MP, LARICCIA V, KHANANSHVILI D, et al. Multipurpose Na+ ions mediate excitation and cellular homeostasis: Evolution of the concept of Na+ pumps and Na+/Ca2+ exchangers. Cell Calcium. 2020;87:102166.
[42] JORGENSEN PL, HAKANSSON KO, KARLISH SJ. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol. 2003;65:817-849.
[43] HUANG CW, RUST NC, WU HF, et al. Altered O-GlcNAcylation and mitochondrial dysfunction, a molecular link between brain glucose dysregulation and sporadic Alzheimer’s disease. Neural Regen Res. 2023;18(4):779-783.
[44] XIANG X, WIND K, WIEDEMANN T, et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med. 2021;13(615):eabe5640.
[45] FERNANDEZ-PEREZ EJ, MUÑOZ B, BASCUÑAN DA, et al. Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell. 2021;20(9):e13455.
[46] ZOTT B, SIMON MM, HONG W, et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science. 2019;365(6453): 559-565.
[47] ANDERSEN JV, WESTI EW, JAKOBSEN E, et al. Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain. 2021;14(1):132. |