[1] HALIM FC, PESCE P, DE ANGELIS N, et al. Comparison of the Clinical Outcomes of Titanium and Zirconia Implant Abutments: A Systematic Review of Systematic Reviews. J Clin Med. 2022;11(17):5052.
[2] VAZOURAS K, GHOLAMI H, MARGVELASHVILI-MALAMENT M, et al. An Esthetic Evaluation of Different Abutment Materials in the Anterior Maxilla: A Randomized Controlled Clinical Trial Using a Crossover Design. J Prosthodont. 2022;31(8):673-680.
[3] LV X, PU Y, ZHANG X, et al. One-piece versus two-piece zirconia abutment supported single implant crown in the esthetic region: 3-Year results from a split-mouth randomized controlled clinical trial. Clin Oral Implants Res. 2023;34(12):1330-1341.
[4] LOPES ACO, MACHADO CM, BONJARDIM LR, et al. The Effect of CAD/CAM Crown Material and Cement Type on Retention to Implant Abutments: CAD/CAM Crown Retentiveness on Ti-Base Abutments. J Prosthodont. 2019;28(2):e552-e556.
[5] CÁRDENAS R, SÁNCHEZ D, EUÁN R, et al. Effect of fatigue loading and failure mode of different ceramic implant abutments. J Prosthet Dent. 2022;127(6):875-881.
[6] PITTA J, HJERPPE J, BURKHARDT F, et al. Mechanical stability and technical outcomes of monolithic CAD/CAM fabricated abutment‐crowns supported by titanium bases: An in vitro study. Clin Oral Implants Res. 2021;32(2):222-232.
[7] WATANABE H, FELLOWS C, AN H. Digital Technologies for Restorative Dentistry. Dent Clin North Am. 2022;66(4):567-590.
[8] SAILER I, KARASAN D, TODOROVIC A, et al. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130-144.
[9] AFRASHTEHFAR KI, WEBER A, ABOU-AYASH S. Titanium-base abutments may have similar long-term peri-implant effects as non-bonded one-piece abutments. Evid Based Dent. 2022;23:134-135.
[10] SAILER I, ASGEIRSSON AG, THOMA DS, et al. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept. Clin Oral Implants Res. 2018;29(4):411-423.
[11] ZHAI Z, NAKANO T, CHEN Y, et al. Abutment removal torque and implant conical surface morphological changes after standardized artificial aging: An in vitro study. J Prosthet Dent. 2022:S0022-3913(22)00738-7.
[12] POZZI A, ARCURI L, FABBRI G, et al. Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: A retrospective multicenter study. J Prosthet Dent. 2023;129(1): 96-108.
[13] JUICA D, MARCUS N, GRANDON F, et al. Premature failure of a screw-retained ceramic single crown: A clinical report and fractographic analysis. J Prosthet Dent. 2022;127(1):32-37.
[14] 方科达,丁鑫,周慧,等.CAD/CAM个性化瓷基台的体外力学性能研究[J].牙体牙髓牙周病学杂志,2017,27(1):22-27.
[15] DERKSEN W, JODA T, CHANTLER J, et al. Group 2 ITI Consensus Report: Technological developments in implant prosthetics. Clin Oral Implants Res. 2023;34(S26):104-111.
[16] WATANABE S, NAKANO T, ONO S, et al. Fracture Resistance of Zirconia Abutments with or without a Titanium Base: An In Vitro Study for Tapered Conical Connection Implants. Materials (Basel). 2022;15(1): 364.
[17] DERKSEN W, TAHMASEB A, WISMEIJER D. Randomized Clinical Trial comparing clinical adjustment times of CAD/CAM screw-retained posterior crowns on ti‐base abutments created with digital or conventional impressions. One‐year follow-up. Clin Oral Implants Res. 2021;32(8):962-970.
[18] MANGANO F, MARGIANI B, ADMAKIN O. A Novel Full-Digital Protocol (SCAN-PLAN-MAKE-DONE®) for the Design and Fabrication of Implant-Supported Monolithic Translucent Zirconia Crowns Cemented on Customized Hybrid Abutments: A Retrospective Clinical Study on 25 Patients. Int J Environ Res Public Health. 2019; 16(3):317.
[19] LERNER H, MOUHYI J, ADMAKIN O, et al. Artificial intelligence in fixed implant prosthodontics: a retrospective study of 106 implant-supported monolithic zirconia crowns inserted in the posterior jaws of 90 patients. BMC Oral Health. 2020;20(1):80.
[20] DERKSEN W, WISMEIJER D. Three-Year Follow-up of a Randomized Clinical Trial on Screw-Retained Monolithic Zirconia Restorations on Ti-Base Abutments Based on Digital or Conventional Impression Techniques. Int J Prosthodont. 2023;36(4):410-415.
[21] 曹伟玉,曹捷,刘宾益,等.2种种植修复制作工艺的Ti-base基台一体冠用于口腔种植单冠修复精度的研究[J].上海口腔医学, 2022,31(4):414-417.
[22] GEHRKE P, ABAZARI C, SCHLICHTER K, et al. Qualitative and Semi-Quantitative Assessment of Processing-Related Surface Contamination of One- and Two-Piece CAD/CAM Abutments before and after Ultrasonic Cleaning. Materials (Basel). 2020;13(14):3225.
[23] 李立,李婷婷,张昀,等.计算机辅助设计与制造技术在口腔修复中的应用[J].卫生职业教育,2017,35(19):152-154.
[24] RAMALHO I, WITEK L, COELHO P, et al. Influence of Abutment Fabrication Method on 3D Fit at the Implant-Abutment Connection. Int J Prosthodont. 2020;33(6):641-647.
[25] CARDOSO KB, BERGAMO ETP, CRUZ VDM, et al. Three-dimensional misfit between Ti-Base abutments and implants evaluated by replica technique. J Appl Oral Sci. 2020;28:e20200343.
[26] ASGEIRSSON AG, SAILER I, GAMPER F, et al. Veneered zirconia abutments cemented on non‐original titanium bases: 1-year results of a prospective case series. Clin Oral Implants Res. 2019;30(8):735-744.
[27] STUCKI L, ASGEIRSSON A, JUNG R, et al. Zirconia Restorations Cemented onto Nonoriginal Titanium Bases May Result in Increased Bleeding on Probing, Probing Depth Values, and Varying Mean Marginal Bone Levels. Int J Prosthodont. 2021;34(5):560-566.
[28] GEHRKE P, SING T, FISCHER C, et al. Marginal and Internal Adaptation of Hybrid Abutment Assemblies After Central and Local Manufacturing, Respectively. Int J Oral Maxillofac Implants. 2018;33(4):808-814.
[29] KOUTOUZIS T. Implant‐abutment connection as contributing factor to peri‐implant diseases. Periodontol 2000. 2019;81(1):152-166.
[30] JACOBS N, SEGHI R, JOHNSTON WM, et al. Displacement and performance of abutments in narrow-diameter implants with different internal connections. J Prosthet Dent. 2022;127(1):100-106.
[31] ÇAKMAK G, GÜVEN ME, DONMEZ MB, et al. Effect of internal connection type and screw channel angle on the screw stability of anterior implant‐supported zirconia crowns.Clin Oral Implants Res. 2023;34(11):1248-1256. [32] QIU H, ZHANG Y, HUANG W, et al. Sintering Properties of Tetragonal Zirconia Nanopowder Preparation of the NaCl + KCl Binary System by the Sol–Gel–Flux Method. ACS Sustainable Chem. Eng. 2023;11(3): 1067-1077.
[33] ADOLFI D, GRANGEIRO MTV, AUSIELLO P, et al. Effect of Antirotational Two-Piece Titanium Base on the Vertical Misfit, Fatigue Behavior, Stress Concentration, and Fracture Load of Implant-Supported Zirconia Crowns. Materials (Basel). 2023;16(13):4848.
[34] MISHRA SK, CHOWDHARY R, KUMARI S. Microleakage at the Different Implant Abutment Interface: A Systematic Review. J Clin Diagn Res. 2017;11(6):ZE10-ZE15.
[35] GINER S, BARTOLOMÉ JF, GOMEZ-COGOLLUDO P, et al. Mechanical Performance of Chairside Ceramic CAD/CAM Restorations and Zirconia Abutments with Different Internal Implant Connections: In Vitro Study and Finite Element Analysis. Materials (Basel). 2021;14(17):5009.
[36] GEHRKE SA, SCARANO A, CORTELLARI GC, et al. Marginal Bone Level and Biomechanical Behavior of Titanium-Indexed Abutment Base of Conical Connection Used for Single Ceramic Crowns on Morse-Taper Implant: A Clinical Retrospective Study. J Funct Biomater. 2023;14(3): 128.
[37] BARBOSA GA, BERNARDES SR, DAS NEVES FD, et al. Relation between implant/abutment vertical misfit and torque loss of abutment screws. Braz Dent J. 2008;19(4):358-363.
[38] KORKMAZ IH, KUL E. Investigation of the Type of Angled Abutment for Anterior Maxillary Implants: A Finite Element Analysis. J Prosthodont. 2022;31(8):689-696.
[39] KAPOOR S, RODRIGUES S, MAHESH M, et al. Evaluation of Stress Generated with Different Abutment Materials and Angulations under Axial and Oblique Loading in the Anterior Maxilla: Three-Dimensional Finite Element Analysis. Int J Dent. 2021;2021:9205930.
[40] ZHANG Y, YU P, YU H. Stress distribution and microgap formation in angulated zirconia abutments with a titanium base in narrow diameter implants: A 3D finite element analysis. Int J Numer Method Biomed Eng. 2022;38(7):e3610.
[41] MA R, YU P, ZHANG Y, et al. Mechanical stability of angulated zirconia abutments supporting maxillary anterior single crowns on narrow-diameter implants. Clin Oral Investig. 2022;27(1):221-233.
[42] KOTSAKIS GA, ROMANOS GE. Biological mechanisms underlying complications related to implant site preparation. Periodontol 2000. 2022;88(1):52-63.
[43] MULLA SH, SEGHI RR, JOHNSTON WM, et al. Effect of cyclic loading on reverse torque values of angled screw channel systems. J Prosthet Dent. 2022;128(3):458-466.
[44] POOVARODOM P, RUNGSIYAKULL C, SURIYAWANAKUL J, et al. Effect of gingival height of a titanium base on the biomechanical behavior of 2-piece custom implant abutments: A 3-dimensional nonlinear finite element study. J Prosthet Dent. 2023;130(3):380.e1-380.e9.
[45] GUNCU M, AKTAS G, GUNCU G, et al. Clinical, Technical, and Radiologic Outcomes of 182 Implant-Supported Zirconia Single Crowns Using Titanium-Base Abutments: A Retrospective Study. Int J Prosthodont. 2022;35(4):553-559.
[46] STRAUSS FJ, SIEGENTHALER M, HÄMMERLE CHF, et al. Restorative angle of zirconia restorations cemented on non‐original titanium bases influences the initial marginal bone loss: 5‐year results of a prospective cohort study. Clin Oral Implants Res. 2022;33(7):745-756.
[47] DE TAPIA B, MOZAS C, VALLES C, et al. Adjunctive effect of modifying the implant‐supported prosthesis in the treatment of peri‐implant mucositis. J Clin Periodontol. 2019;46(10):1050-1060.
[48] HERMANN JS, SCHOOLFIELD JD, SCHENK RK, et al. Influence of the Size of the Microgap on Crestal Bone Changes Around Titanium Implants. A Histometric Evaluation of Unloaded Non‐Submerged Implants in the Canine Mandible. J Periodontol. 2001;72(10):1372-1383.
[49] LANG R, HILLER KA, KIENBÖCK L, et al. Influence of autoclave sterilization on bond strength between zirconia frameworks and Ti-base abutments using different resin cements. J Prosthet Dent. 2022;127(4): 617.e1-617.e6.
[50] SAPONARO PC, KARASAN D, DONMEZ MB, et al. Prosthetic complications with monolithic or micro-veneered implant-supported zirconia single-unit, multiple-unit, and complete-arch prostheses on titanium base abutments: A single center retrospective study with mean follow-up period of 72.35 months. Clin Implant Dent Relat Res. 2023;25(1):99-106.
[51] MEHL C, KERN M. Retention of zirconia on titanium in two-piece abutments with self-adhesive resin cements. J Prosthet Dent. 2018; 120(2):214-219.
[52] VON MALTZAHN NF, HOLSTERMANN J, KOHORST P. Retention Forces between Titanium and Zirconia Components of Two‐Part Implant Abutments with Different Techniques of Surface Modification. Clin Implant Dent Relat Res. 2016;18(4):735-744.
[53] GEHRKE P, ALIUS J, FISCHER C, et al. Retentive Strength of Two‐Piece CAD / CAM Zirconia Implant Abutments. Clin Implant Dent Relat Res. 2014;16(6):920-925.
[54] WIEDENMANN F, LIEBERMANN A, SPINTZYK S, et al. Influence of Different Cleaning Procedures on Tensile Bond Strength Between Zirconia Abutment and Titanium Base. Int J Oral Maxillofac Implants. 2019;34(6):1318-1327. [55] PACHECO ND, SENNA PM, GOMES RS, et al. Influence of luting space of zirconia abutment on marginal discrepancy and tensile strength after dynamic loading. J Prosthet Dent. 2021;125(4):683.e1-683.e8.
[56] FREIFRAU VON MALTZAHN N, BERNARD S, KOHORST P. Two‐part implant abutments with titanium and ceramic components: Surface modification affects retention forces-An in‐vitro study. Clin Oral Implants Res. 2019;30(9):903-909.
[57] MEHL C, ZHANG Q, LEHMANN F, et al. Retention of zirconia on titanium in two-piece abutments with self-adhesive resin cements. J Prosthet Dent. 2018;120(2):214-219. |