中国组织工程研究 ›› 2012, Vol. 16 ›› Issue (26): 4867-4871.doi: 10.3969/j.issn.1673-8225.2012.26.023

• 骨与关节循证医学 evidence-based medicine of the bone and joint • 上一篇    下一篇

可穿戴式多参数监护装置信号处理平台的设计与实现

谭 新,刘虔铖,徐彬锋   

  1. 广东食品药品职业学院,广东省广州市 510520
  • 收稿日期:2011-09-20 修回日期:2011-10-12 出版日期:2012-06-24 发布日期:2013-11-02
  • 作者简介:谭新★,男,1982年生,重庆市人,汉族,2008年重庆大学生物工程学院毕业,硕士,主要从事计算机在生物医学中的应用、远程医疗技术及应用、医疗器械质量管理与检测技术等研究。 tx_win0102@hotmail.com

Design and realization of signal processing platform of multi-parameter wearable medical devices

Tan Xin, Liu Qian-cheng, Xu Bin-feng   

  1. Guangdong Food and Drug Vocational College, Guangzhou 510520,Guangdong Province, China
  • Received:2011-09-20 Revised:2011-10-12 Online:2012-06-24 Published:2013-11-02
  • About author:Tan Xin★, Master, Guangdong Food and Drug Vocational College, Guangzhou 510520, Guangdong Province, China tx_win0102@hotmail.com

摘要:

背景:可穿戴式多参数监护装置具有生理信号检测和处理、信号特征提取和数据传输等基本功能模块,可实现对人体的无创检测、诊断。
目的:将信号处理平台运用到对时效性和精确度要求较高的可穿戴式多参数监护装置中,提高ECG信号QRS波检测的检测速度和检定准确率。
方法:提出了一种新型可穿戴式多参数监护装置信号处理平台的设计思路,应用TMS320VC5509系列DSP系统实现改进后的LADT压缩算法结合小波变换和阈值检测ECG信号中QRS波的方法。
结果与结论:采用硬件DSP的方法显著提高了QRS波检测的速度,其结果可以用于穿戴式多参数监护装置异常心电检测的实际应用。

关键词: 穿戴式多参数监护装置, DSP, LADT, 小波变换, 数字化医学

Abstract:

BACKGROUND: Multi-parameter wearable medical devices have physiological signal detection and processing modules, signal feature extraction and data transmission basic function modules which can implement a non-invasive detection and diagnosis on the human body.
OBJECTIVE: To increase the detection rate and verification accuracy rate of QRS waves detection for electrocardiogram signal by the signal processing platform applied to wearable multi-parameter devices which require timeliness and accuracy.
METHODS: A type of multi-parameter wearable medical devices signal processing platform was designed. A QRS-wave detection algorithm was established based on linear approximation distance thresholding algorithm, wavelet transformation and threshold detection by TMS320VC5509 DSP system.
RESULTS AND CONCLUSION: The DSP can greatly increase the speed of QRS-wave detection, and the results can be practically used for multi-parameter wearable device detection of abnormal electrocardiograph.

中图分类号: