中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (18): 4582-4593.doi: 10.12307/2026.699

• 口腔组织构建 oral tissue construction • 上一篇    下一篇

数字化设计游离腓骨瓣修复单侧上颌骨缺损的有限元分析

翟  堃1,刘东阳1,马  坚1,林志瑀2,郑茂盛2,马小琴2,景  捷1   

  1. 1宁夏医科大学总医院口腔颌面外科,宁夏回族自治区银川市  750004;2宁夏医科大学口腔医学院,宁夏回族自治区银川市  750004


  • 收稿日期:2025-05-19 接受日期:2025-09-17 出版日期:2026-06-28 发布日期:2025-12-02
  • 通讯作者: 景捷,博士,主任医师,教授,硕士生导师,宁夏医科大学总医院口腔颌面外科,宁夏回族自治区银川市 750004
  • 作者简介:翟堃,男,1984年生,河北省邯郸市人,汉族,硕士,主治医师,主要从事颌骨缺损修复重建方向的研究。
  • 基金资助:
    宁夏自然科学基金(2021AAC03377),项目负责人:翟堃;宁夏自然科学基金(2020AAC03357),项目负责人:景捷

Finite element analysis of digitally designed free fibula flaps for repairing unilateral maxillary defects

Zhai Kun1, Liu Dongyang1, Ma Jian1, Lin Zhiyu2, Zheng Maosheng2, Ma Xiaoqin2, Jing Jie1   

  1. 1Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China; 2School of Stomatology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
  • Received:2025-05-19 Accepted:2025-09-17 Online:2026-06-28 Published:2025-12-02
  • Contact: Jing Jie, PhD., Chief physician, Professor, Master's supervisor, Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
  • About author:Zhai Kun, MS, Attending physician, Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
  • Supported by:
    Natural Science Foundation of Ningxia Hui Autonomous Region, Nos. 2021AAC03377 (to ZK), 2020AAC03357 (to JJ)

摘要:


文题释义:
上颌骨缺损:因肿瘤及肿瘤切除术后、创伤及炎症等因素导致的上颌骨的缺损,其缺损造成的患者颜面部萎缩、眼眶凹陷等面部畸形以及咀嚼、言语等功能障碍,严重影响患者日常生活及身心健康,临床上针对上颌骨缺损的分类多采用Brown分类法。
游离腓骨瓣:从患者腓骨区域切取适合大小的腓骨组织,并包括它的供血血管,制备成离体的腓骨肌皮瓣,通过显微血管吻合技术将腓骨组织瓣的血管与缺损部位的血管吻合,获得良好的血供,从而在移植部位长期存活。

背景:游离腓骨肌皮瓣是目前修复单侧上颌骨缺损的重要手段,临床上多采用单层游离腓骨肌皮瓣及双层折叠式游离腓骨肌皮瓣修复单侧上颌骨缺损,但目前对于二者重建后上颌骨骨性支柱的恢复情况仍缺少相关的生物力学研究。
目的:利用三维有限元法分析单层游离腓骨瓣及双层折叠游离腓骨瓣修复单侧上颌骨缺损并模拟种植修复后各结构的生物力学特征。
方法:收集1例拟行“上颌骨次全切除术同期血管化腓骨肌皮瓣修复重建”52岁男性患者的上颌骨、腓骨CT数据,将数据导入 Mimics 21.0软件,通过数字化设计模拟行上颌骨次全切除术并建立单层及双层折叠腓骨修复上颌骨缺损三维模型,再将模型导入Geomagic Studio 2014、SolidWorks 2019、Ansys 18.0等软件建立正常上颌骨复合体(模型A)、模拟种植修复后单层游离腓骨瓣修复单侧上颌骨缺损(模型B)及双层折叠游离腓骨瓣修复单侧上颌骨缺损(模型C)的三维有限元模型,分析比较各模型双侧后牙垂直加载对上颌骨、小钛板及种植义齿的应力分布情况及生物机械稳定性。
结果与结论:①模型A、B、C上颌骨应力主要分布在健侧上颌骨近颧骨区域、重建侧腓骨区域以及双侧眶外侧、眶内侧和鼻根部区域;模型B在左侧梨状孔边缘处的应力值明显大于模型C且在该处出现明显红色应力集中区;②模型B在腓骨与牙槽突断端的连接区域在不同载荷下位移均大于模型C,两模型位移最大值出现在患侧加载250 N时,模型 B为30 μm,模型C为23 μm;③模型B、C小钛板的最大应力均位于连接腓骨段与腓骨段之间的转折处的钛板,各载荷下两模型小钛板的最大应力值较为接近,模型B、C小钛板的最大位移在各载荷下均出现在连接腓骨与牙槽突断端小钛板的第一个钉孔处;位移最大值为模型B在该区域患侧加载 250 N时,为 27 μm;④模型B、C种植体在3种载荷下应力均集中于各种植体颈部区域,两模型应力最大值位于末端种植体上,且模型C明显大于模型B,模型B最大应力为58.5 MPa,模型C为160.6 MPa。同时模型B、C最大位移均位于前端种植体上,位移值随载荷的增大而增大,且模型C最大位移值略小于模型B;⑤结果证实:单层式与双层折叠式游离腓骨瓣重建单侧上颌骨缺损后均能较好地恢复上颌骨生物力学支柱,但单层腓骨修复上颌骨在鼻旁处易产生应力集中,导致在受到较大外力作用时会增加该部位骨折的风险,因此采用双层折叠腓骨修复上颌骨更有利于其鼻旁支柱的恢复;这两种修复方式中采用双层折叠腓骨瓣较单层式具有更好的稳定性,但该方式种植义齿局部应力值更大。

https://orcid.org/0009-0004-8424-8480(翟堃)


中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程

关键词: 上颌骨缺损, 双层折叠腓骨, 种植义齿, 有限元分析, 应力, 数字化设计, 小钛板, 生物力学支柱

Abstract: BACKGROUND: The free peroneal muscle flap is currently an important method for repairing unilateral maxillary defects. In clinical practice, both single-layer free peroneal muscle flaps and double-layer folded free peroneal muscle flaps are commonly used to address these defects. However, there is still a lack of relevant biomechanical studies on the restoration of the bony struts of the maxilla following the reconstruction with either technique.
OBJECTIVE: To analyze the biomechanical characteristics of unilateral maxillary defects repaired with a single-layer free fibular flap and a double-layer folded free fibular flap, and to simulate the biomechanical properties of each structure after implant restoration using the three-dimensional finite element method.
METHODS: CT data of the maxilla and fibula from a 52-year-old male patient scheduled for "subtotal maxillectomy with simultaneous vascularized fibular osteomyocutaneous flap reconstruction" were collected. The data were imported into Mimics 21.0 software to digitally simulate subtotal maxillectomy and to establish 3D models of single-layer and double-layer folded fibular flap reconstructions. The models were then imported into Geomagic Studio 2014, SolidWorks 2019, and Ansys 18.0 to construct three-dimensional finite element models: a normal maxillary complex (Model A), a unilateral maxillary defect reconstructed with a single-layer free fibular flap and simulated implant restoration (Model B), and a unilateral maxillary defect reconstructed with a double-layer folded free fibular flap and simulated implant restoration (Model C). The stress distribution and biomechanical stability of the maxilla, miniplates, and implant prostheses under bilateral posterior vertical loading were compared among the models.
RESULTS AND CONCLUSION: (1) In Models A, B, and C, maxillary stress was primarily distributed in the healthy maxilla near the zygomatic region, the reconstructed fibular region, and the bilateral lateral orbit, medial orbit, and nasal root areas. Model B exhibited significantly higher stress at the left piriform aperture margin compared with Model C, with a prominent red stress concentration zone in this area. (2) Under various loads, the displacement at the junction between the fibula and the alveolar process in Model B was greater than that in Model C. The maximum displacement occurred under a 250 N load on the affected side: 30 μm for Model B and 23 μm for Model C. (3) In both Models B and C, the maximum stress on the miniplates was located at the bending points connecting the fibular segments. The peak stress values were similar between the two models. The maximum displacement of the miniplates occurred at the first screw hole of the miniplate connecting the fibula and the alveolar process, with the highest displacement (27 μm) observed in Model B under a 250 N load on the affected side. (4) Under three loading conditions, stress in the implants of Models B and C was concentrated at the neck regions, with the highest stress occurring in the distal implants. Model C exhibited significantly greater stress (160.6 MPa) than Model B (58.5 MPa). Meanwhile, the maximum displacement occurred in the anterior implants of both models, increasing with load magnitude, and Model C showed slightly lower displacement than Model B. (5) The results confirmed that both single-layer and double-layer folded free fibular flaps effectively restored the biomechanical support of the maxilla after unilateral defect reconstruction. However, the single-layer reconstruction led to stress concentration near the nasal region, increasing the risk of fracture under high external forces. Therefore, the double-layer folded fibular reconstruction is more favorable for restoring nasomaxillary support. Between the two methods, the double-layer folded fibular flap provided better stability, though it resulted in higher localized stress on the implant prostheses.



Key words: maxillary defect, double fold fibula, implant denture, finite element analysis, stress, digital design, miniplates, biomechanical pillar

中图分类号: