[1] LIU H. Emerging agents and regimens for AML. J Hematol Oncol. 2021; 14(1):49.
[2] MOHAMED JIFFRY MZ, KLOSS R, AHMED-KHAN M, et al. A review of treatment options employed in relapsed/refractory AML. Hematology. 2023;28(1):2196482.
[3] MINCIACCHI VR, KUMAR R, KRAUSE DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells. 2021;10(1):117.
[4] DAL BELLO R, PACCHIARDI K, CHAUVEL C, et al. Relative Mitochondrial Priming Predicts Survival in Older AML Patients Treated Intensively. Hemasphere. 2022;7(1):e819.
[5] GUERRA VA, DINARDO C, KONOPLEVA M. Venetoclax-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(2):145-153.
[6] BRIDGES MC, DAULAGALA AC, KOURTIDIS A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045.
[7] HERMAN AB, TSITSIPATIS D, GOROSPE M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82(12):2252-2266.
[8] ZHANG Y, WANG X, HU C, et al. Shiny transcriptional junk: lncRNA-derived peptides in cancers and immune responses. Life Sci. 2023;316:121434.
[9] DAHARIYA S, PADDIBHATLA I, KUMAR S, et al. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol. 2019; 112:82-92.
[10] KAYSER S, LEVIS MJ. Updates on targeted therapies for acute myeloid leukaemia. Br J Haematol. 2022;196(2):316-328.
[11] DU A, YANG Q, LUO X. Cuproptosis-related lncRNAs as potential biomarkers of AML prognosis and the role of lncRNA HAGLR/miR-326/CDKN2A regulatory axis in AML. Am J Cancer Res. 2023;13(9):3921-3940.
[12] LIU S, ZHOU J, YE X, et al. A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development. Leukemia. 2023;37(7):1421-1434.
[13] YANG Y, ZHAO Y, ZHANG W, et al. Whole transcriptome sequencing identifies crucial genes associated with colon cancer and elucidation of their possible mechanisms of action. Onco Targets Ther. 2019;12:2737-2747.
[14] DINIZ MG, FRANÇA JA, VILAS-BOAS FAS, et al. The long noncoding RNA KIAA0125 is upregulated in ameloblastomas. Pathol Res Pract. 2019;215(3): 466-469.
[15] HUNG SY, LIN CC, HSU CL, et al. The expression levels of long non-coding RNA KIAA0125 are associated with distinct clinical and biological features in myelodysplastic syndromes. Br J Haematol. 2021;192(3):589-598.
[16] NG SW, MITCHELL A, KENNEDY JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433-437.
[17] WANG YH, LIN CC, HSU CL, et al. Distinct clinical and biological characteristics of acute myeloid leukemia with higher expression of long noncoding RNA KIAA0125. Ann Hematol. 2021;100(2):487-498.
[18] SI H, WANG J, HE R, et al. Identification of U937JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor. Front Oncol. 2022; 11:807200.
[19] BENNETT JM, CATOVSKY D, DANIEL MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451-458.
[20] ROBINSON MD, MCCARTHY DJ, SMYTH GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140.
[21] YANG Y, ZHAO Y, HU N, et al. lncRNA KIAA0125 functions as a tumor suppressor modulating growth and metastasis of colorectal cancer via Wnt/β-catenin pathway. Cell Biol Int. 2019;43(12):1463-1470.
[22] LU Q, QU W, WEN Y, et al. Single-cell RNA-seq reveals the links between the metabolic heterogeneity and cell identity in NBM and AML. Br J Haematol. 2024;204(3):1100-1104.
[23] BOUCHACOURT B, HOSPITAL MA, ZEMMOUR C, et al. Post-remission therapy of adults aged 60 and older with acute myeloid leukemia in first complete remission: role of treatment intensity on the outcome. Ann Hematol. 2020;99(4):773-780.
[24] 令狐顺,肖青,王欣,等.老年急性髓系白血病患者临床特征与预后分析[J].中国药业,2023,32(12): 66-71.
[25] STEMLER J, CORNELY OA. Antifungal Prophylaxis in Acute Myeloid Leukemia: New Drugs, New Challenges?: Summary of the EHA Guideline on Antifungal Prophylaxis in Adult Patients With Acute Myeloid Leukemia Treated With Novel-targeted Therapies. Hemasphere. 2022;6(7):e742.
[26] 杨淳,张莺莺,张军.急性髓性细胞白血病免疫分型特点及其与疗效、预后关系的研究[J].标记免疫分析与临床,2021,28(3):462-465.
[27] 朱海波,赵明峰,李玉明,等.初治急性髓系白血病患者首次诱导化疗后血小板计数与预后的关系研究[J].中国全科医学,2016,19(29):3528-3533.
[28] JAYARAMAN S, PAZHANI J, PRIYAVEERARAGHAVAN V, et al. PCNA and Ki67: Prognostic proliferation markers for oral cancer. Oral Oncol. 2022;130: 105943.
[29] SASAKI H, HIROSE T, OURA T, et al. Selective Bcl-2 inhibition promotes hematopoietic chimerism and allograft tolerance without myelosuppression in nonhuman primates. Sci Transl Med. 2023;15(690):eadd5318.
[30] FAIRLIE WD, LEE EF. Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochem Soc Trans. 2021;49(5):2397-2410.
[31] SPITZ AZ, GAVATHIOTIS E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci. 2022;43(3):206-220.
[32] LIU J, XIAO Q, XIAO J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.
[33] YU F, YU C, LI F, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):307.
[34] ZHANG Y, WANG X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165.
[35] XUE W, YANG L, CHEN C, et al. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 2024;81(1):79.
[36] SAKODA T, KIKUSHIGE Y, MIYAMOTO T, et al. TIM-3 signaling hijacks the canonical Wnt/β-catenin pathway to maintain cancer stemness in acute myeloid leukemia. Blood Adv. 2023;7(10):2053-2065.
[37] YE W, WANG J, HUANG J, et al. ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification. Front Med. 2023;17(4):685-698.
[38] WU A, BAO Y, YU H, et al. Berberine Accelerates Odontoblast Differentiation by Wnt/β-Catenin Activation. Cell Reprogram. 2019;21(2):108-114.
[39] BARZILAI-TUTSCH H, MORIN V, TOULOUSE G, et al. Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development. Elife. 2022;11:e72098.
[40] COLE MD, COWLING VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008; 9(10):810-815.
[41] DUFFY MJ, O’GRADY S, TANG M, et al. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.
[42] JHA RK, KOUZINE F, LEVENS D. MYC function and regulation in physiological perspective. Front Cell Dev Biol. 2023;11:1268275.
[43] LIU S, QIAO X, WU S, et al. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis. 2022;27(11-12):913-928.
[44] RU Y, CHEN XJ, ZHAO ZW, et al. CyclinD1 and p57kip2 as biomarkers in differentiation, metastasis and prognosis of gastric cardia adenocarcinoma. Oncotarget. 2017;8(43):73860-73870. |