1] PASCAL M, BEAUDEAU P, MEDINA S, et al. Global Change: a Public Health Researcher’s Ethical Responsibility. Curr Environ Health Rep. 2019;6(3):160-166.
[2] COHEN SM, ARNOLD LL, BECK BD, et al. Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol. 2013;43(9):711-752.
[3] CANTONI O, ZITO E, GUIDARELLI A, et al. Mitochondrial ROS, ER Stress, and Nrf2 Crosstalk in the Regulation of Mitochondrial Apoptosis Induced by Arsenite. Antioxidants (Basel). 2022;11(5):1034.
[4] GUIDELINES FOR DRINKING-WATER QUALITY. Fourth edition incorporating the first and second addenda [Internet]. Geneva: World Health Organization, 2022.
[5] RO SH, BAE J, JANG Y, et al. Arsenic Toxicity on Metabolism and Autophagy in Adipose and Muscle Tissues. Antioxidants (Basel). 2022; 11(4):689.
[6] GANIE SY, JAVAID D, HAJAM YA, et al. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb). 2023;13(1): tfad111.
[7] SUN J, WU L, WU M, et al. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact. 2023;382:110626.
[8] LIANG J, LI L, LI L, et al. Lipid metabolism reprogramming in head and neck cancer. Front Oncol. 2023;13:1271505.
[9] XU K, XIA P, GONGYE X, et al. A novel lncRNA RP11-386G11.10 reprograms lipid metabolism to promote hepatocellular carcinoma progression. Mol Metab. 2022;63:101540.
[10] YOUNOSSI ZM, GOLABI P, PRICE JK, et al. The Global Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis Among Patients With Type 2 Diabetes. Clin Gastroenterol Hepatol. 2024:S1542-3565(24)00287-8. doi: 10.1016/j.cgh.2024.03.006.
[11] MEDDA N, DE SK, MAITI S. Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. Ecotoxicol Environ Saf. 2021;208:111752.
[12] RENU K, CHAKRABORTY R, MYAKALA H, et al. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity - A review. Chemosphere. 2021;271:129735.
[13] RADI SH, VEMURI K, MARTINEZ-LOMELI J, et al. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne). 2023;14:1226173.
[14] CHIANG JYL, FERRELL JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol. 2022;548:111618.
[15] CHAMBERS KF, DAY PE, ABOUFARRAG HT, et al. Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients. 2019;11(11):2588.
[16] KIR S, ZHANG Y, GERARD RD, et al. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J Biol Chem. 2012;287(49): 41334-41341.
[17] 王甜,赵哲仪,穆银贵,等.亚砷酸钠所致L-02人肝细胞损伤与p14ARF表达下调及MDM2、p53表达增加有关[J].细胞与分子免疫学杂志,2020,36(6):507-512.
[18] THYMIAKOU E, OTHMAN A, HORNEMANN T, et al. Defects in High Density Lipoprotein metabolism and hepatic steatosis in mice with liver-specific ablation of Hepatocyte Nuclear Factor 4A. Metabolism. 2020;110:154307.
[19] GIRISA S, HENAMAYEE S, PARAMA D, et al. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. Mol Biomed. 2021;2(1):21.
[20] SCHROEDER F, JOLLY CA, CHO TH, et al. Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids. 1998;92(1):1-25.
[21] AFOLABI OK, WUSU AD, OGUNRINOLA OO, et al. Arsenic-induced dyslipidemia in male albino rats: comparison between trivalent and pentavalent inorganic arsenic in drinking water. BMC Pharmacol Toxicol. 2015;16:15.
[22] KUO CC, SU PH, SUN CW, et al. Early-life arsenic exposure promotes atherogenic lipid metabolism in adolescence: A 15-year birth cohort follow-up study in central Taiwan. Environ Int. 2018;118:97-105.
[23] GARCIAFIGUEROA DY, KLEI LR, AMBROSIO F, et al. Arsenic-stimulated lipolysis and adipose remodeling is mediated by G-protein-coupled receptors. Toxicol Sci. 2013;134(2):335-344.
[24] EVANS RM, MANGELSDORF DJ. Nuclear Receptors, RXR, and the Big Bang. Cell. 2014;157(1):255-266.
[25] HERRERA-PULIDO JA, BOISVERT FM, Boudreau F. Hepatocyte nuclear factor 4α multiple isoforms, their functions, and their interactomes. Proteomics. 2023;23(13-14):e2200372.
[26] HUCK I, MORRIS EM, THYFAULT J, et al. Hepatocyte-Specific Hepatocyte Nuclear Factor 4 Alpha (HNF4) Deletion Decreases Resting Energy Expenditure by Disrupting Lipid and Carbohydrate Homeostasis. Gene Expr. 2021;20(3):157-168.
[27] XU Y, ZHOU Z, KANG X, et al. Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a. Nat Commun. 2022;13(1):4555.
[28] ZHU C, DONG B, SUN L, et al. Cell Sources and Influencing Factors of Liver Regeneration: A Review. Med Sci Monit. 2020;26:e929129.
[29] HAIDAR Z, FATEMA K, SHOILY SS, et al. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep. 2023; 10:554-570.
[30] KHAN AN, SINGH R, BHATTACHARYA A, et al. Glucogallin Attenuates RAW 264.7 Cells from Arsenic Trioxide Induced Toxicity via the NF-ҡB/NLRP3 Pathway. Molecules. 2022;27(16):5263.
[31] NING BF, DING J, LIU J, et al. Hepatocyte nuclear factor 4α-nuclear factor-κB feedback circuit modulates liver cancer progression. Hepatology. 2014;60(5):1607-1619.
[32] RENU K, SARAVANAN A, ELANGOVAN A, et al. An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci. 2020;260:118438.
[33] PASTORET A, MARCOS R, SAMPAYO-REYES A, et al. Inhibition of hepatocyte nuclear factor 1 and 4 alpha (HNF1α and HNF4α) as a mechanism of arsenic carcinogenesis. Arch Toxicol. 2013;87(6): 1001-1012.
[34] 赵哲仪,王正蓉,方兴艳,等.亚砷酸钠对AML12肝细胞氧化应激、凋亡损伤及Hippo信号通路的影响[J].中国组织工程研究, 2022,26(26):4186-4191.
[35] CAI WY, LIN LY, HAO H, et al. Yes-associated protein/TEA domain family member and hepatocyte nuclear factor 4-alpha (HNF4α) repress reciprocally to regulate hepatocarcinogenesis in rats and mice. Hepatology. 2017;65(4):1206-1221.
[36] BIAGIONI F, CROCI O, SBERNA S, et al. Decoding YAP dependent transcription in the liver. Nucleic Acids Res. 2022;50(14):7959-7971.
[37] TVETER KM, MEZHIBOVSKY E, WU Y, et al. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther. 2023;248:108457.
[38] FAROOQUI N, ELHENCE A, SHALIMAR. A Current Understanding of Bile Acids in Chronic Liver Disease. J Clin Exp Hepatol. 2022;12(1):155-173.
[39] 徐懂,尹美君,王钰铭,等.FXR-CYP7A1轴在胆汁淤积性肝病中的调控研究进展[J].中西医结合肝病杂志,2021,31(5):470-473.
[40] GUTHRIE G, VONDEROHE C, BURRIN D. Fibroblast growth factor 15/19 expression, regulation, and function: An overview. Mol Cell Endocrinol. 2022;548:111617.
[41] SONG Y, XU C, SHAO S, et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol. 2015;62(5):1171-1179.
[42] JIN B, LI H, ZHANG H, et al. Effects of carnosic acid on arsenic-induced liver injury in mice: A comparative transcriptomics analysis. J Trace Elem Med Biol. 2022;71:126953.
[43] LI J, GUO C, LIU Y, et al. Chronic arsenic exposure-provoked biotoxicity involved in liver-microbiota-gut axis disruption in chickens based on multi-omics technologies. J Adv Res. 2024:S2090-1232(24)00032-8. doi: 10.1016/j.jare.2024.01.019.
[44] YANG Y, CHI L, LIU CW, et al. Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice. Chem Res Toxicol. 2023;36(7):1037-1043.
[45] YANG Y, HSIAO YC, LIU CW, et al. The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice. Toxics. 2023; 11(10):833.
[46] RIBAS GS, VARGAS CR. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cell Mol Neurobiol. 2022;42(3):521-532.
[47] HAGA S, YIMIN, OZAKI M. Relevance of FXR-p62/SQSTM1 pathway for survival and protection of mouse hepatocytes and liver, especially with steatosis. BMC Gastroenterol. 2017;17(1):9.
[48] LV R, ZHU M, CHEN K, et al. Z-Guggulsterone Induces Apoptosis in Gastric Cancer Cells through the Intrinsic Mitochondria-Dependent Pathway. ScientificWorldJournal. 2021;2021:3152304.
[49] KIM DH, PARK JS, CHOI HI, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12(4):320.
[50] FUJINO T, MARUKO-OHTAKE A, OHTAKE Y, et al. Farnesoid X receptor knockdown provides significant growth inhibition in hepatocellular carcinoma cells while it does not interfere with the proliferation of primary human hepatocyte-derived cells. J Toxicol Sci. 2015;40(4): 501-508.
[51] QIAO P, LI S, ZHANG H, et al. Farnesoid X receptor inhibits proliferation of human colorectal cancer cells via the miR‑135A1/CCNG2 signaling pathway. Oncol Rep. 2018;40(4):2067-2078.
[52] 赵哲仪,王正蓉,方兴艳,等.亚砷酸钠对小鼠肝细胞AML12损伤的作用机制[J].贵州医科大学学报,2022,47(1):1-6. |